JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Plastic Deformation Behavior of Sintered Fe-Based Alloys for Light-Weight Automotive Components
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Plastic Deformation Behavior of Sintered Fe-Based Alloys for Light-Weight Automotive Components
Kang, Yohan; Yoon, Suchul; Kim, Minwook; Lee, Seok-Jae;
  PDF(new window)
 Abstract
We investigated the effects of the chemical composition and the relative density on the plastic deformation behavior of sintered Fe-based alloys by means of compressive tests. Overall compressive stresses increased as the amount of alloying elements and the relative density were respectively increased. Addition of alloying elements except for Mo increased the yield stress regardless of the relative density. The relationship between the effects of the chemical composition and the relative density and the mean rate of the stress increase was analyzed. A constitutive equation based on the Ludwik equation with the regressed parameters was proposed to predict the compressive true stress-true strain curves of the sintered Fe-based alloys. The K and n values used in the proposed equation were regressed as a function of the alloying elements and the relative density based on the individual K and n values. The plastic deformation behavior predicted using the proposed constitutive equation showed reliable accuracy compared with experimental data.
 Keywords
Sintered Fe-based alloys;Constitutive equation;Alloying element;Relative density;Light-weight automotive component;
 Language
English
 Cited by
 References
1.
J. Hirsch and T. Al-Samman, Acta Mater. 61, 818 (2013). crossref(new window)

2.
D. K. Park and Y. J. Kim, J. Kor. Pow. Metall. Inst. 13, 1 (2006). crossref(new window)

3.
Z. Zhang and R. Sandstrom, J. Alloys Compd. 363, 194 (2004). crossref(new window)

4.
D. Shanmugasundaram and R. Chandramouli, Mater. Des. 30, 3444 (2009). crossref(new window)

5.
W. F. Wang, Mater. Sci. Eng. A 402, 92 (2005). crossref(new window)

6.
J. Victoria-Hernandez, D. Hernandez-Silva, and M. Vite-Torres, Wear 267, 340 (2009). crossref(new window)

7.
H. Zuhailawati, T. C. Geok, and P. Basu, Mater. Des. 31, 2211 (2010). crossref(new window)

8.
M. E. Sotomayor, L. M. Ospina, B. Levenfeld, and A. Varez, Mater. Charac. 86, 108 (2013). crossref(new window)

9.
U. Bohnenkamp and R. Sandstrom, Steel Res. 71, 88 (2000). crossref(new window)

10.
S. Gialanella, X. Amils, M. D. Baro, P. Delcroix, G. Le Caër, L. Lutterotti, and S. Surinach, Acta Mater. 46, 3305 (1998). crossref(new window)

11.
Y. Saberi, S. M. Zebarjad, and G. H. Akbari, J. Alloys Compd. 484, 637 (2009). crossref(new window)

12.
F. B. Pickering, Towards Improvement Ductility and Toughness, (Climax Molybdenum Company, Tokyo, 1971), p. 9.

13.
P. D. Hodgson and R.K. Gibbs, ISIJ Inter. 32, 1329 (1992). crossref(new window)

14.
F. B. Pickering, TISCO Silver Jubilee Jan-Oct, 105 (1980).

15.
J. H. Hollomon, Trans. AIME 162, 268 (1945).

16.
P. Ludwik, Elemente der Technologischen Mechanik, (Verlag Von Julius Springer, Leipzig, 1909) p. 32.

17.
H. W. Swift, J. Mech. Phys. Solids 1, 1 (1952). crossref(new window)

18.
E. Voce, J. Inst. Met. 74, 537 (1948).

19.
D. C. Ludwigson, Metall. Trans. 2, 2825 (1971). crossref(new window)