JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Facile Fabrication and Characterization of In2O3 Nanorods on Carbon Fibers
Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su;
  PDF(new window)
 Abstract
Indium oxide () nanorods (NRs) which can be expected to increase the device performance in various electronic and electrochemical applications were prepared on carbon fibers via an electrochemical deposition (ED) method. During the ED, the indium hydroxide () NRs were well grown and firmly attached onto the carbon fibers. After that, they were changed into by dehydration through a thermal annealing. The morphological and structural properties were investigated using field-emission scanning electron microscope images. The crystallinity of as-prepared sample was evaluated by X-ray diffraction. The Fourier transform infrared results confirm that the functional groups are present in the NRs. This facile process of metal oxide nanostructures on carbon fiber can be utilized for flexible electronic and energy related applications.
 Keywords
Carbon fibers; nanorods;Electrochemical deposition process;
 Language
English
 Cited by
 References
1.
G. Shen, B. Liang, X. Wang, H. Huang, D. Chen, and Z. L. Wang, ACS Nano, 5, 6148, (2011). crossref(new window)

2.
C. Y. Huang, G. C. Lin, Y. J. Wu, T. Y. Lin, Y. j. Yang, and Y. F. Chen, J. Phys. Chem. C, 115, 13083 (2011). crossref(new window)

3.
H. Y. Yang, S. F. Yu, H. K. Liang, T. P. Chen, J. Gao, and T. Wu, Opt. Express, 18, 15585 (2010). crossref(new window)

4.
J. Gan, X. Lu, J. Wu, S. Xie, T. Zhai, M. Y, Z. Zhang, Y. Mao, S. C. Wang, Y. Shen and Y. Ton, Sci. Rep., 3, 1021 (2012).

5.
A. Gurlo, Nanoscale, 3, 154 (2011). crossref(new window)

6.
L. Qin, P. S. Dutta, and S. Sawyer, Semicond. Sci. Technol., 27, 045005 (2012). crossref(new window)

7.
X. Zou, X. Liu, C. Wang, Y. Jiang, Y. Wang, X. Xiao, J. C. Ho, J. Li, C. Jiang, Q. Xiong, and L. Liao, ACS Nano, 7, 804 (2013). crossref(new window)

8.
J. Q. Xu, Y. P. Chen, Q. Y. Pan, Q. Xiang, , Z. X. Cheng, and X. W. Dong, Nanotechnology, 18, 115615 (2007). crossref(new window)

9.
L. Wu, Q. Li, X. Zhang, T. Zahai, Y. Bando, and D. Golberg, J. Phys. Chem. C, 115, 24564 (2011). crossref(new window)

10.
P. C. Chen, G. Shen, Y. Shi, H. Chen, and C. Zhou, ACS Nano, 4, 4403 (2010). crossref(new window)

11.
X. Xu, D. Wang, W. Wang, P. Sun, J. Ma, X. Liang, Y. Sun, Y. Ma, and G. Lu, Sens. Actuator B. Chem., 171-172, 1066 (2012). crossref(new window)

12.
W. Yin, M. Cao, S. Luo, C. Hu, and B. Wei, Cryst. Growth Des. 9, 2173 (2009). crossref(new window)

13.
A. Askarinejad, M. Iranpour, N. Bahramifar, and A. Morsali, J. Exp. Nanosci., 5, 294 (2010). crossref(new window)

14.
N. G. Pramod, S. N. Pandey, and P. P. Sahay, J. Therm. Spray Technol., 22, 1035 (2013). crossref(new window)

15.
D. Chu, Y. Masuda, T. Ohji, and K. Kato, Langmuir, 26, 14814 (2010). crossref(new window)

16.
S. Dai, Y. Li, Z. Du, and K. R. Crter, J. Electrochem. Soc., 160, D156 (2013). crossref(new window)

17.
N. K. Reddy, M. Devika, and C. W. Tu. Mater. Lett., 120, 62 (2014). crossref(new window)

18.
X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, and G. Shen, Nanoscale, 5, 7831 (2013). crossref(new window)

19.
Z. Wang, H. Wang, B. Liu, W. Qiu, J. Zhang, S. Ran, H. Huang, J. Xu, H. Han, D. Chen, G. Shen, ACS Nano, 5, 8412 (2011). crossref(new window)

20.
R. K. Joshi, and J. J. Schneider, Chem. Soc. Rev, 41, 5285 (2012). crossref(new window)

21.
M. Z. B. Hussein, Z. Zainal, A. Hj. Yahaya, and A. B. Abd. Aziz, Mater. Sci. Eng. B, 88, 100 (2002).