Advanced SearchSearch Tips
Electronic Structure of the SrTiO3(001) Surfaces: Effects of the Oxygen Vacancy and Hydrogen Adsorption
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electronic Structure of the SrTiO3(001) Surfaces: Effects of the Oxygen Vacancy and Hydrogen Adsorption
Takeyasua, K.; Fukadaa, K.; Oguraa, S.; Matsumotob, M.; Fukutania, K.;
  PDF(new window)
The influence of electron irradiation and hydrogen adsorption on the electronic structure of the (001) surface was investigated by ultraviolet photoemission spectroscopy (UPS). Upon electron irradiation of the surface, UPS revealed an electronic state within the band gap (in-gap state: IGS) with the surface kept at . This is considered to originate from oxygen vacancies at the topmost surface formed by electron-stimulated desorption of oxygen. Electron irradiation also caused a downward shift of the valence band maximum indicating downward band-bending and formation of a conductive layer on the surface. With oxygen dosage on the electron-irradiated surface, on the other hand, the IGS intensity was decreased along with upward band-bending, which points to disappearance of the conductive layer. The results indicate that electron irradiation and oxygen dosage allow us to control the surface electronic structure between semiconducting (nearly-vacancy free: NVF) and metallic (oxygen de cient: OD) regimes by changing the density of the oxygen vacancy. When the NVF surface was exposed to atomic hydrogen, in-gap states were induced along with downward band bending. The hydrogen saturation coverage was evaluated to be with nuclear reaction analysis. From the IGS intensity and H coverage, we argue that H is positively charged as on the NVF surface. On the OD surface, on the other hand, the IGS intensity due to oxygen vacancies was found to decrease to half the initial value with molecular hydrogen dosage. H is expected to be negatively charged as on the OD surface by occupying the oxygen vacancy site.
Oxygen vacancy;;Hydrogen adsorption;
 Cited by
A. F. Santander-Syro, O. Copie, T. Kondo, F. Fortuna, S. Pailhes, R. Weht, X. G. Qiu, F. Bertran, A. Nicolaou, A. Taleb-Ibrahimi, P. Le Fevre, G. Herrantz, M. Bibes, N. Reyren, Y. Apertet, P. Lecoeur, A. Barthelemy, and M. J. Rozenberg, Nature 469, 189 (2011). crossref(new window)

W. Meevasana, P. D. C. King, R. H. He, S.-K. Mo, M. Hashimoto, A. Tamai, P. Songsiririt-thigul, F. Baumberger, and Z.-X. Shen, Nat. Mater. 10, 114 (2011). crossref(new window)

A. Kudo and Y. Miseki, Chem. Soc. Rev. 38, 253 (2009). crossref(new window)

Y. Kuo and K. J. Klabunde, Nanotechnology 23, 294001 (2012). crossref(new window)

D. A. Muller, N. Nakagawa, A. Ohtomo, J. L. Grazul, and H. Y. Hwang, Nature 430, 657 (2004). crossref(new window)

V. E. Henrich, Prog. Surf. Sci. 9, 143 (1979). crossref(new window)

S. Azad, M. H. Engelhard, and L.-Q. Wang, J. Phys. Chem. B 109, 10327 (2005). crossref(new window)

J. Baniecki, M. Ishii, K. Kurihara, K. Yamanaka, T. Yano, K. Shinozaki, T. Imada, K. Nozaki, and N. Kin, Phys. Rev. B 78, 195415 (2008). crossref(new window)

J. Shen, H. Lee, R. Valent, and H. O. Jeschke, Phys. Rev. B 86, 195119 (2012). crossref(new window)

O. Dulub, M. Batzill, S. Solovev, E. Loginova, A. Alchagirov, T. E. Madey, and U. Diebold, Science 317, 1052 (2007). crossref(new window)

C. M. Yim, C. L. Pang and G. Thornton, Phys. Rev. Lett. 104, 036806 (2010). crossref(new window)

M. D'Angelo, R. Yukawa, K. Ozawa, S. Yamamoto, T. Hirahara, S. Hasegawa, M. Silly, F. Sirotti, and I. Matsuda, Phys. Rev. Lett. 108, 116802 (2012). crossref(new window)

R. Yukawa, S. Yamamoto, K. Ozawa, M. D'Angelo, M. G. Silly, F. Sirotti, and I. Matsuda, Phys. Rev. B 87, 115314 (2013). crossref(new window)

F. Lin, S. Wang, F. Zheng, G. Zhou, J. Wu, B. L. Gu, and W. Duan, Phys. Rev. B 79, 35311 (2009). crossref(new window)

B. Jalan, R. Engel-Herbert, T. E. Mates, and S. Stemmer, Appl. Phys. Lett. 93, 52907 (2008). crossref(new window)

J.-H. Ahn, P. C. McIntyre, L. W. Mirkarimi, S. R. Gilbert, J. Amano, and M. Schulberg, Appl. Phys. Lett. 77, 1378 (2000). crossref(new window)

Y. Iwazaki, Y. Gohda, and S. Tsuneyuki, APL Materials 2, 012103 (2014). crossref(new window)

S. Ferrer and G. A. Somorjai, Surf. Sci. 94, 41 (1980). crossref(new window)

F. T. Wagner, S. Ferrer, and G. A. Somorjai, Surf. Sci. 101, 462 (1980). crossref(new window)

K. Takeyasu, K. Fukada, M. Matsumoto, and K. Fukutani, J. Phys.: Condens. Matter 25, 162202 (2013). crossref(new window)

K. Takeyasu, K. Fukada, S. Ogura, M. Matsumoto, and K. Fukutani, J. Chem. Phys. 140, 084703 (2014). crossref(new window)

Y. Liang and D. A. Bonnell, Surf. Sci. 310, 128 (1994). crossref(new window)

K. Fukutani, Curr. Opin. Solid State Mater. Sci. 6, 153 (2002). crossref(new window)

M. Wilde and K. Fukutani, Surf. Sci. Rep. in press.

J. F. Zieqler, Handbook of stopping cross-sections for energetic ions in all elements (Pergamon Press, New York, 1980).

K. Fukutani, A. Itoh, M. Wilde, and M. Matsumoto, Phys. Rev. Lett. 88, 116101 (2002). crossref(new window)

V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Phys. Rev. B 17, 4908 (1978). crossref(new window)

V. E. Henrich, G. Dresselhaus, and H. J. Zeiger, Solid Stat. Commun. 24, 623 (1977). crossref(new window)

A. Fujimori, I. Hase, M. Nakamura, H. Namatame, Y. Fujishima, Y. Tokura, M. Abbate, F. M. F. de Groot, M. T. Czyzyk, and J. C. Fuggle, Phys. Rev. B 46, 9841 (1992). crossref(new window)

J. L. M. van Mechelen, D. van der Marel, C. Grimaldi, A. B. Kuzmenko, N. P. Armitage, N. Reyren, H. Hagemann, and I. I. Mazin, Phys. Rev. Lett. 100, 226403 (2008). crossref(new window)

Y. Ishida, R. Eguchi, M. Matsunami, K. Horiba, M. Taguchi, and A. Chainani, Phys. Rev. Lett. 100, 56401 (2008). crossref(new window)

R. Moos and K. H. Hardtl, J. Am. Ceram. Soc. 80, 2549 (1997).

A. Rothschild, W. Menesklou, H. L. Tuller, and I.-T. Ellen, Chem. Mater. 18, 3651 (2006). crossref(new window)

Q. Fu and T. Wagner, J. Phys. Chem. B 109, 11697 (2005). crossref(new window)

Z. Hou and K. Terakura, J. Phys. Soc. Jpn. 79, 114704 (2010). crossref(new window)

M. A. Henderson, W. S. Epling, C. L. Perkins, C. H. F. Peden, and U. Diebold, J. Phys. Chem. B 103, 5328 (1999).

P. A. Thiel and T. E. Madey, Surf. Sci. Rep. 7, 211 (1990).

J. Tao, Q. Cuan, X.-Q. Gong, and M. Batzill, J. Phys. Chem. C 116, 20438 (2012). crossref(new window)

E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S. Kim, and C. Hwang, Phys. Rev. B 73, 193202 (2006). crossref(new window)

R. Astala and P. D. Bristowe, Modelling Simul. Mater. Sci. Eng. 9, 415 (2001). crossref(new window)

R. C. Neville, B. Hoeneisen, and C. A. Mead, J. Appl. Phys. 43, 2124 (1972). crossref(new window)

Y. Chen, M. M. Abraham, L. C. Templeton, and W. P. Unruh, Phys. Rev. B 11, 881 (1975). crossref(new window)

Y. Chen, V. M. Orera, R. Gonzalez, R. T. Williams, G. P. Williams, G. H. Rosenblatt, and G. J. Pogatshnik, Phys. Rev. B 42, 1410 (1990). crossref(new window)

K. Hayashi, S. Matsuishi, T. Kamiya, M. Hirano, and H. Hosono, Nature 419, 462 (2002). crossref(new window)

Y. Kobayashi, O. J. Hernandez, T. Sakaguchi, T. Yajima, T. Roisnel, Y. Tsujimoto, M. Morita, Y. Noda, Y. Mogami, A. Kitada, M. Ohkura, S. Hosokawa, Z. Li, K. Hayashi, Y. Kusano, J. E. Kim, N. Tsuji, A. Fujiwara, Y. Matsushita, K. Yoshimura, K. Takegoshi, M. Inoue, M. Takano, and H. Kageyama, Nat. Mater. 11, 507 (2012). crossref(new window)

F. Filippone, G. Mattioli, P. Alippi, and A. A. Bonapasta, Phys. Rev. B 80, 245203 (2009). crossref(new window)

Y. Iwazaki, T. Suzuki, and S. Tsuneyuki, J. Appl. Phys. 108, 83705 (2010). crossref(new window)

D. R. Lide, CRC handbook of chemistry and physics (CRC Press, Boca Raton London New York Washington, D.C., 2001), 82nd ed.

F. Lenzmann, J. Krueger, S. Burnside, K. Brooks, M. Gra, D. Gal, S. Ru, and D. Cahen, J. Phys. Chem. B 105, 6347 (2001). crossref(new window)

P. P. Ewald, Ann. Phys. 64, 253 (1921).

G. G. Libowitz and T. R. P. Gibb Jr., J. Phys. Chem. 60, 510 (1956). crossref(new window)