JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement
Jang, Haegyu; Lee, Hak-Seung; Lee, Honyoung; Chae, Heeyeop;
  PDF(new window)
 Abstract
In this article, plasma monitoring tools and mulivariate analysis techniques were reviewed. Optical emission spectroscopy was reviewed for a chemical composition analysis tool and RF V-I probe for a physical analysis tool for plasma monitoring. Multivariate analysis techniques are discussed to the sensitivity improvement. Principal component analysis (PCA) is one of the widely adopted multivariate analysis techniques and its application to end-point detection of plasma etching process is discussed.
 Keywords
Plasma diagnosis;Optical emission spectroscopy;VI probe;Principal component analysis;Multivariate analysis;
 Language
English
 Cited by
1.
Effect of Dual Radio Frequency Bias Power on SiO2 Sputter Etching in Inductively Coupled Plasma, Nano, 2017, 12, 02, 1750025  crossref(new windwow)
 References
1.
R. Mohan Sankaran (Ed.), Plasma processing of nanomaterials (CRC Press, Florida, 2012), pp. 1-54.

2.
S. J. Pearton. and D. P. Norton, Plasma Process. Polym. 2, 16 (2005) crossref(new window)

3.
P. Mishra, Harsh and S.S. Islam, Superlattice Microst. 64, 399 (2013) crossref(new window)

4.
J. M. Stilahn, K. J Trevino and E. R. Fisher, Annu. Rev. Anal. Chem. 1, 261 (2008) crossref(new window)

5.
M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley-Interscience, New Jersey, 2005), pp. 387-534.

6.
A. Grill, Cold Plasma in Materials Fabrication: From Fundamentals to Applications (IEEE PRESS, New York, 1994), pp. 114-150.

7.
C. M. Chou, C. C. Chuang, C. H. Lin, C. J. Chung and J. L. He, Surf. Coat. Tech. 205, 4880 (2011) crossref(new window)

8.
V. Kudrle, P. Vasina, A. Talsky, M. Mrazkova, O. Stec and J. Janca, J. Phys. D: Appl. Phys. 43, 124020 (2010) crossref(new window)

9.
E. Karakas, V. M. Donnelly and D. J. Economou, J. Appl. Phys. 113, 213301 (2013) crossref(new window)

10.
X. Z. Jiang, Y. X. Liu, S. Yang, W. Q. Lu, Z. H. Bi, X. S. Li and Y. N. Wang, J. Vac. Sci. Technol. A, 29, 011006 (2011)

11.
V. I. Demidov, S. V. Ratynskaia and K. Rypdal, Rev. Sci. Instrum. 73, 3409 (2002) crossref(new window)

12.
J. Joo, Applied Science & Convergence Technology 23, 161 (2014) crossref(new window)

13.
H. Lee and J. Jung, J. Korean Vac. Soc. 21, 121 (2012) crossref(new window)

14.
A. J. Izenman, Modern Multivariate Statistical Techniques (Springer Science + Business Media, New York, 2008), pp. 107-313, 407-504, 597-632.

15.
Gil Su Son, Yong Han Roh, Geum. Young. Yeom, Su Hong Kim, Myoung Woon Kim, Hyung Chul Cho, J. Korean Vac. Soc. 20, 416 (2011) crossref(new window)

16.
S. A. Linnik and A. V. Gaydaychuk, Vacuum, 103, 28 (2014) crossref(new window)

17.
G. S. Selwyn, AVS monograph series: Optical diagnostic techniques for plasma processing, edited by Woody weed (AVS Press, New Work, 1993), pp 27-80.

18.
Verity Instruments http://www.verityinst.com/pdfs/ Applications_Information.pdf

19.
K. Han, E. S. Yoon, J. Lee, H. Chae, K. H. Han and K. J. Park, Ind. Eng. Chem. Res. 47, 3907 (2008) crossref(new window)

20.
P. L. S. Thamban, S. Yun, G. Padron-Wells, J. W. Hosch and M. J. Goeckner, J. Vac. Sci. Technol. A, 30, 061303 (2012) crossref(new window)

21.
K. Han, K. J. Park, H. Chae and E. S. Yoon, Korean J. Chem. Eng. 25, 13 (2008) crossref(new window)

22.
J. W. Coburn and M. Chen, J. Appl. Phys. 51, 3134 (1980) crossref(new window)

23.
R. d'Agostino, F. Cramarossa, S. D. Benedictis and G. Ferraro, J. Appl. Phys. 52, 1259 (1981) crossref(new window)

24.
T. Czerwiec, F. Greer and D. B. Graves, J. Phys. D: Appl. Phys. 38, 4278 (2005) crossref(new window)

25.
M. Kanoh, M. Yamage and H. Takada, Jpn. J. Appl. Phys. 40, 1457 (2001) crossref(new window)

26.
V. M. Donnelly and A. Kornblit, J. Vac. Sci. Technol. A. 31, 050825 (2013) crossref(new window)

27.
G. Y. Yeom, Plasma Etching Technology, (Miraecom Press, Seoul, 2006), pp 380-394.

28.
K. Ukai and K. Hanazawa, J. Vac. Sci. Technol. 16, 385 (1979) crossref(new window)

29.
G. Fortunato, J. Phys. E Sci. Instrum. 20, 1051 (1987) crossref(new window)

30.
V. Patel, B. Singh and J. H. Thomas III, Appl. Phys. Lett. 61, 1912 (1992) crossref(new window)

31.
M. N. A. Dewan, P. J. McNally, T. Perova and P. A. F. Herbert, Microelectron. Eng. 65, 25 (2003) crossref(new window)

32.
P. Dubreuil and D. Belharet, Microelectron. Eng. 87, 2275 (2010) crossref(new window)

33.
H. L. Maynard, E. A. Rietman, J. T. C. Lee and D. E. Ibbotson, J. Electrochem. Soc. 143, 2029 (1996) crossref(new window)

34.
J. L. Kleber and L. J. Overzet, Plasma Source Sci. Technol. 8, 534 (1999) crossref(new window)

35.
M. A. Sobolewski, J. Appl. Phys. 100, 063310 (2006) crossref(new window)

36.
M. A. Sobolewski and D. L. Lahr, J. Vac. Sci. Technol. A, 30, 051303 (2012) crossref(new window)

37.
M. A, Sobolewski, J. Vac. Sci. Technol. A, 24, 1892 (2006) crossref(new window)

38.
H. Jang, J. Nam, C. K. Kim and H. Chae, Plasma Process. Polym. 10, 850 (2013)

39.
S. J. Qin, J. Chemometr. 17, 480 (2003) crossref(new window)