JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electronic Structure of Organic/organic Interface Depending on Heteroepitaxial Growth Using Templating Layer
Lim, Hee Seon; Kim, Sehun; Kim, Jeong Won;
  PDF(new window)
 Abstract
The electronic structure at organic-organic interface gives essential information on device performance such as charge transport and mobility. Especially, the molecular orientation of organic material can affect the electronic structure at interface and ultimately the device performance in organic photovoltaics. The molecular orientation is examined by the change in ionization potential (IP) for metal phthalocyanines (MPc, M=Zn, Cu)/fullerene () interfaces on ITO by adding the CuI templating layer through ultraviolet photoelectron spectroscopy measurement. On CuPc/ bilayer, the addition of CuI templating layer represents the noticeable change in IP, while it hardly affects the electronic structure of ZnPc/ bilayer. The CuPc molecules on CuI represent relatively lying down orientation with intermolecular overlap being aligned in vertical direction. Consequently, in organic photovoltaics consisting of CuPc and as donor and acceptor, respectively, the carrier transport along the direction is enhanced by the insertion of CuI templaing layer. In addition, optical absorption in CuPc molecules is increased due to aligned transition matrix elements. Overall the lying down orientation of CuPc on CuI will improve photovoltaic efficiency.
 Keywords
Organic/organic interface;Organic photovoltaics;Photoelectron spectroscopy;Molecular orientation;Ionization potential;
 Language
English
 Cited by
 References
1.
S. R. Forrest, Chem. Rev. 97, 1793 (1997). crossref(new window)

2.
C. D. Muller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Nature 421, 829 (2003). crossref(new window)

3.
P. Peumans, A. Yakimov, S. R. Forrest, J. Appl. Phys. 93, 3693 (2003). crossref(new window)

4.
B. O. Regan, M. Gratzel, Nature 353, 737 (1991). crossref(new window)

5.
L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, R. H. Friend, Nature 434, 194 (2005). crossref(new window)

6.
F. Amy, C. Chan, A. Kahn, Org. Electron. 6, 85 (2005). crossref(new window)

7.
M. Muntwiler, Q. Yang, W. A. Tisdale, X. Y. Zhu, Phys. Rev. Lett. 101, 196403 (2008). crossref(new window)

8.
S. Kera, H. Yamane, N. Ueno, Prog. Surf. Sci. 84, 135 (2009). crossref(new window)

9.
W.Chen, D-C Qi, H H, X Gao, A. T. S. Wee, Adv. Funct. Mater. 21, 410 (2011). crossref(new window)

10.
K. 0. Sylvester-Hvid, J. Phys. Chem. B 110, 2618 (2006). crossref(new window)

11.
N. Sai, R. Gearba, A. Dolocan, J. R. Tritsch, W.-L. Chan, J. R. Chelikowsky, K. Leung, X. Zhu, J. Phys. Chem. Lett. 3, 2173 (2012). crossref(new window)

12.
C. H. Cheng, J. Wang, G. T. Du, S. H. Shi, Z. J. Du, Z. Q. Fan, J. M. Bian, M. S. Wang, Appl. Phys. Lett. 97, 083305 (2010). crossref(new window)

13.
Y. H. Kim, S. Kwon, J. H. Lee, S. M. Park, Y. M. Lee, J. W. Kim, J. Phys. Chem. C 115, 6599 (2011). crossref(new window)

14.
P. Peumans, S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001). crossref(new window)

15.
J. G. Xue, S. R. Uchida, B. P. Rand, S. R. Forrest, Appl. Phys. Lett. 84, 3013 (2004). crossref(new window)

16.
S. Morita, A. A. Zakhidov, K. Yoshino, Solid State Communication 82, 249 (1992). crossref(new window)

17.
T.-M. Kim, H. J. Kim, H.-S. Shim, M.-S. Choi, J. W. Kim, J.-J. Kim, J. Mater. Chem. A 2, 8730 (2014). crossref(new window)

18.
T.-M. Kim, H.-S. Shim, M.-S. Choi, H. J. Kim, J.-J. Kim, ACS Appl. Mater. Interfaces 6, 4286 (2014). crossref(new window)

19.
S. R. Yost, T. V. Voorhis, J. Phy. Chem. C 117, 5617 (2013). crossref(new window)

20.
A. Twarowski, J. Chem. Phys. 77, 4698 (1982). crossref(new window)