Advanced SearchSearch Tips
Distinct Band Gap Tunability of Zinc Oxysulfide (ZnOS) Thin Films Synthesized from Thioacetate-Capped ZnO Nanocrystals
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Distinct Band Gap Tunability of Zinc Oxysulfide (ZnOS) Thin Films Synthesized from Thioacetate-Capped ZnO Nanocrystals
Lee, Don-Sung; Jeong, Hyun-Dam;
  PDF(new window)
Zinc oxysulfide nanocrystals (ZnOS NCs) were synthesized by forming ZnS phase on a ZnO matrix. ZnO nanocrystals (NCs) with a diameter of 10 nm were synthesized by forced hydrolysis in an organic solvent. As-synthesized ZnO NCs aggregated with each other due to the high surface energy. As acetic acid (AA) was added into the milky suspension of the aggregated ZnO NCs, transparent solution of well dispersed ZnO NCs formed. Finally ZnOS NCs were formed by adding thioacetic acid (TAA) to the transparent solution. The effect of recrystallization on the structural, optical and electrical properties of the ZnOS NCs were studied. The results of UV-vis absorption confirmed the band gap tunability caused by increasing the curing temperature of ZnOS thin films. This may have originated from the larger effective size due to the recrystallization of zinc sulfide (ZnS). From XRD result we identified that ZnOS thin films have a zinc blende crystal structure of ZnS without wurtzite ZnO structure. This is probably due to the small amount of ZnO phases. These assertions were verified through EDS of FE-SEM, XPS and EDS mapping of HR-TEM results; we clearly proved that ZnOS were comprised of ZnS and ZnO phases.
ZnOS;ZnO;ZnS;Nanocrystal;Thin film;
 Cited by
Joo. J, Kwon. S. G, You. J. H, and Hyeon. T. H, Adv. Mater. 17, 1873 (2005). crossref(new window)

Rodriguez-Gattorno. G, Santiago-Jacinto. P, Rendon-Vazquez. L, Nemeth. J, Dekany. I, and Diaz. D, J. Phys. Chem. B. 107, 12597 (2003). crossref(new window)

Polat. , Aksu. S, Altunba . M, and Bacaksz. E, Phys. Status Solidi A. 209, 160 (2012). crossref(new window)

Hsieh. T. -M, Lue. S. J, Ao. J, Sun. Y, and Feng. W. -S, Journal of Power Sources. 246, 443 (2014). crossref(new window)

Platzer-Bjorkman. C, Torndahl. T, Abou-Ras. D, Malmström. J, Kessler. J, and Stolt, L, J. Appl. Phys. 100, 044506 (2006). crossref(new window)

Orent. T, J. Vac. Sco. Technol. A. 9, 2447 (1991). crossref(new window)

Meyer. B. K, Polity. A, Farangis, B. He. Y, Hasselkamp. D, Kramer. T, Wang. C, Haboeck. U, and Hoffmann. A, Phys. Stat. sol. C. 1, 694 (2004). crossref(new window)

Sanders. B. W, Kitai. A, Chem. Mater. 4, 1005 (1992). crossref(new window)

Bakke. J. R, Tanskanen. J. T, Hagglund. C, Pakkanen. T. A, and Vent. S. F, J. Vac. Sci. Technol. A. 30, 01A135-1 (2012). crossref(new window)

Deulkar. S. H, Huang. J. -L, and Neumann-Spallart. M, Journal of Electronic Materials. 39, 589 (2010). crossref(new window)

Seon. J. -B, Lee. S. Y, Kim. J. M, and Jeong. H. -D, Chem. Mater. 21, 604 (2009). crossref(new window)

Mai. X. D, Dao. D. T, and Jeong. H. -D, Curr. Appl. Phys. 13, 1075 (2013). crossref(new window)

Brayner. R, Ferrari-Iliou. R, Brivois. N, Djediat. C, Benedetti. M. F, and Fievet. F, Nano. Lett. 6, 866 (2006). crossref(new window)

Brayner. R, Dahoumane. S. A, Yepremian. C, Djediat. C, Meyer. M, Coute. A, and Fievet. F, Langmuir 26, 6522 (2010). crossref(new window)

Jezequel. D, Guenot. J, Jouini. N, and Fievet. F, J. Mater. Res. 10, 77 (1995). crossref(new window)

Liu. X, Luo. Y, Li. H, Fan. Y, Yu. Z, Lin. Y, Chen. L, and Meng. Q, Chem. Commun. 2847 (2007).

Qin. L, Shing. C, Sawyer. S, and Dutta. P. S, Optical Materials. 33, 359 (2011). crossref(new window)

Lu. Z, Xu. J, Xie. X, Wang. H, Wang. C, Kwok. S. -Y, Wong. T, Kwong. H. L, Bello. I, Lee. C. -S, Lee. S. -T, and Zhang. W, J. Phys. Chem. C. 116, 2656 (2012). crossref(new window)

Zeng. H, Cai. W, Liu. P, Xu. X, Zhou. H, Klingshirn. C, and Kalt. H, ACS Nano 2, 1661 (2008). crossref(new window)

Jiao. B. C, Zhang. X. D, Wei. C. C, Sun. J, Huang. Q, and Zhao. Y, Thin Solid Films. 520, 1323 (2011). crossref(new window)

Cao. Y, Galoppini. E, Reyes. P. I, Duan. Z, and Lu. Y, Langmuir 28, 7947 (2012). crossref(new window)

Caglar. M, Caglar. Y, and Ilican. S, J. Optoelectro. Adv. M. 8, 1410 (2006).

Segala. K, Dutra. R. L, Vranco. C. V, Pereira. A. S, and Trindade. T, J. Braz. Chem. Soc. 21, 1986 (2010). crossref(new window)

Meulenkamp. E. A, J. Phys. Chem. B. 102, 5566 (1998). crossref(new window)

Nabiyouni. G, Sahraei. R, Toghiany. M, Majles Ara. M. H, and Hedayati. K, Rev. Adv. Mater. Sci. 27, 52 (2011).

Lee. S, Jeong. Y. M, Jeong. S. H, Lee. J. S, Jeon. M. H, and Moon. J. H, Superlattice. Microst. 44, 761 (2008). crossref(new window)

Huang. Q. L, Wang. M, Zhong. H. -X, Chen. X. -T, Xue. Z. -L, and You. X. -Z, Cryst. Growth Des. 8, 1412 (2008). crossref(new window)

Xu. J. F, Ji. W, Lin. J.Y, Tang. S.H, Du. Y. W, Appl. Phys. A. 66, 639 (1998).

Ollinger. M, Craciun. V, and Singh. R. K, Mat. Res. Soc. Symp. Proc. 704, w8.4.1 (2002).

Kim. S. -H, Kim. H. -K, and Seong. T. -Y, Apply. Phys. Lett. 86, 022101 (2005). crossref(new window)

Zabet-Khosousi. A, and Dhirani. A. A, Chem. Rev. 108, 4072 (2008). crossref(new window)

Kim. S. -J, and Lee. J. -S, Nano Lett. 10, 2884 (2010). crossref(new window)

Talapin. D. V, Lee. J. -S, Kovalenko. M. V, and Shevchenko. E. V, Chem. Rev. 110, 389 (2010). crossref(new window)