JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Luminescence Properties of InAlAs/AlGaAs Quantum Dots Grown by Modified Molecular Beam Epitaxy
Kwon, Se Ra; Ryu, Mee-Yi; Song, Jin Dong;
  PDF(new window)
 Abstract
Self-assembled InAlAs/AlGaAs quantum dots (QDs) on GaAs substrates were grown by using modified molecular epitaxy beam in Stranski-Krastanov method. In order to study the structural and optical properties of InAlAs/AlGaAs QDs, atomic force microscopy (AFM) and photoluminescence (PL) measurements are conducted. The size and uniformity of QDs have been observed from the AFM images. The average widths and heights of QDs are increased as the deposition time increases. The PL spectra of QDs are composed of two peaks. The PL spectra of QDs were analyzed by the excitation laser power- and temperature-dependent PL, in which two PL peaks are attributed to two predominant sizes of QDs.
 Keywords
InAlAs;Quantum dot;Photoluminescence;
 Language
English
 Cited by
1.
Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles,;;;;

Applied Science and Convergence Technology, 2015. vol.24. 3, pp.67-71 crossref(new window)
1.
Power density and temperature effects on the photoluminescence spectra of InAlAs/GaAlAs quantum dots, Superlattices and Microstructures, 2017, 104, 321  crossref(new windwow)
2.
Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles, Applied Science and Convergence Technology, 2015, 24, 3, 67  crossref(new windwow)
3.
Luminescence properties of InP/InGaP quantum structures grown by using a migration-enhanced epitaxy at different growth temperatures, Journal of the Korean Physical Society, 2017, 70, 8, 785  crossref(new windwow)
 References
1.
V. A. Odnoblyudov and C. W. Tu, Appl. Phys. Lett. 89, 191107 (2009).

2.
N. Nuntawong, S. Birudavolu, C. P. Hains, S. Huang, H. Xu, and D. L. Huffaker, Appl. Phys. Lett 85, 3050 (2004). crossref(new window)

3.
M. Sugawara, H. Ebem N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, Phys. Rev. B 69, 235332 (2004). crossref(new window)

4.
S. K. Kang, S. J. Lee, J. I. Lee, M. D. Kim, S. K. Noh, Y. H. Kang, U. H. Lee, S. C. Hong, H. S. Kim, and C. G. Park, J. Korean Phys. Soc. 42, 418 (2003).

5.
Y. Arakawa and H. Sakaki, Appl. Phys. Lett. 40, 939 (1982). crossref(new window)

6.
R. Oshima, A. Takata, and Y. Okada, Appl. Phys. Lett. 94, 083111 (2008).

7.
X. M. Lu, Y. Lzumi, M. Koyama, Y. Nakata, S. Adachi, and S. Muto, J. Cryst. Growth 322, 6 (2011). crossref(new window)

8.
R. Songmuang, S. Kiravittaya, M. Sawadsaringkarn, S. Panyakeow, and O. G. Schmidt, J. Cryst. Growth 251, 166 (2003). crossref(new window)

9.
B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gober, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, Appl. Phys. Lett. 86, 101908 (2005). crossref(new window)

10.
S. G. Li, Q. Gong, Y. F. Lao, K. He, J. Li, Y. G. Zhang, S. L. Feng, and H. L. Wang, Appl. Phys. Lett. 93, 111109 (2008). crossref(new window)

11.
J. S. Kim, D. K. Oh, P. W. Yu, J. -Y. Leem, J. I. Lee, and C. R. Lee, J. Cryst Growth 261, 38 (2004). crossref(new window)

12.
W. Zhou, B. Xu, H. Xu, F. Liu, Q. Gong, W. Jiang, Z. Sun, D. Ding, J. Liang, Z. Wang, Z. Zhu, and G. Li, Chinese Phys. Lett 16, 298 (1999). crossref(new window)

13.
R. Leon, S. Fafard, D. Leonard, J. L. Merz, and P. M. Pertroff, Science 274, 1350 (1998).

14.
S. Fafard, R. Leon, D. Leonard, J. L. Merz, and P. M. Petroff, Phys. Rev. B 50, 8086 (1994). crossref(new window)

15.
A. F. Tsatsul'nikov, A. Yu. Egorov, P. S. Kopev, A. R. Kovsh, N. N. Ledentsov, M. V. Maximov, A. A. Suvorova, V. M. Ustinov, B. V. Volovik, A. E. Zhukov, M. Grundmann, D. Bimberg, and Zh. I. Alferov, Appl. Surf. Sci. 123/124, 381 (1998). crossref(new window)

16.
G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, IEEE Photon. Technol. Lett. 12, 230 (2004).