JOURNAL BROWSE
Search
Advanced SearchSearch Tips
H2S Gas Sensing Properties of CuO Nanotubes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
H2S Gas Sensing Properties of CuO Nanotubes
Kang, Wooseung; Park, Sunghoon;
  PDF(new window)
 Abstract
CuO nanotubes are synthesized using nanorod templates for application to gas sensors. nanorod templates were synthesized by using the VS method through thermal evaporation. Scanning electron microscopy, transmission electron microscopy and X-ray diffraction showed that the synthesized nanotubes were monoclinic-structured polycrystalline CuO with diameter and wall thickness of approximately 100~300 nm and 5~10 nm, respectively. The CuO nanotube sensor showed responses of 136~325% for the concentration of 0.1~5 ppm at room temperature. These response values are approximately twice as high as that of the CuO nanowire sensor for the same concentrations of gas. Along with the investigation of the performance of the sensors, the mechanisms of gas sensing of the CuO nanotubes are also discussed in this study.
 Keywords
CuO;Nanotube;;Gas sensor;
 Language
English
 Cited by
 References
1.
J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater. 18, 867 (2006). crossref(new window)

2.
J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008). crossref(new window)

3.
J. Chao, X. Xu, H. Huang, Z. Liu, B. Liang, X. Wang, S. Ran, D. Chen, and G. Shen, Cryst. Eng. Comm. 14, 6654 (2012). crossref(new window)

4.
N. Singh, R.K. Gupta, and P.S. Lee, ACS Appl. Mater. Interfaces, 3, 2246 (2011). crossref(new window)

5.
S. Niu, Y. Hu, X. Wen, Y. Zhou, F. Zhang, L. Lin, S. Wang, and Z.L. Wang, Adv. Mater. 25, 3701 (2013). crossref(new window)

6.
D. Li, J. Hu, R. Wu, and J.G. Lu, Nanotechnol. 21, 485502 (2010). crossref(new window)

7.
E. Comini, Metal oxide nano-crystals for gas sensing, Anal. Chim. Acta 568, 28 (2006). crossref(new window)

8.
Y. Qin, F. Zhang, Y. Chen, Y. Zhou, J. Li, A. Zhu, Y. Luo, Y. Tian, and J. Yang, J. Phys. Chem. C 116, 11994 (2012). crossref(new window)

9.
N. Barsan, C. Simion, T. Heine, S. Pokhrel, and U. Weimar, J. Electroceram. 25, 11 (2010). crossref(new window)

10.
L. Xu, R. Xing, J. Song, W. Xu, and H. Song, J. Mater. Chem. C 1, 2174 (2013). crossref(new window)

11.
J. Fu, C. Zhao, J. Zhang, Y. Peng, and E. Xie, ACS Appl. Mater. Interfaces 5, 7410 (2013). crossref(new window)

12.
H. Kim, C. Jin, S. Park, S. Kim, and C. Lee, Sens. Actuators B 161, 594 (2012). crossref(new window)

13.
S. An, S. Park, H. Ko, and C. Lee, Ceram. Int. 40, 1423 (2014). crossref(new window)

14.
N.S. Ramgir, S.K. Ganapathi, M. Kaur, N. Datta, K.P. Muthe, D.K. Aswal, S.K. Gupta, and J.V. Yakhmi, Sens. Actuators B 151, 90 (2010). crossref(new window)

15.
J. Chen, K. Wang, L. Hartman, and W. Zhou, J. Phys. Chem. C 112, 16017 (2008). crossref(new window)

16.
K. Saetia, J.M. Schnorr, M.M. Mannarino, S.Y. Kim, G.C. Rutledge, T.M. Swager, and P.T. Hammond, Adv. Func. Mater. 24, 492 (2014). crossref(new window)

17.
M. Hubner, C.E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, and U. Weimar, Sens. Actuators B 153, 347 (2011). crossref(new window)

18.
C. A. Grimes, J. Mater. Chem. 17, 1451 (2007). crossref(new window)