Advanced SearchSearch Tips
Strategies in Protein Immobilization on a Gold Surface
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Strategies in Protein Immobilization on a Gold Surface
Park, Jeho; Kim, Moonil;
  PDF(new window)
Protein immobilization on a gold surface plays an important role in the usefulness of biosensors that utilize gold-coated surfaces such as surface plasmon resonance (SPR), quartz crystal microbalance (QCM), etc. For developing high performance biosensors, it is necessarily required that immobilized proteins must remain biologically active. Loss of protein activity and maintenance of its stability on transducer surfaces is directly associated with the choice of immobilization methods, affecting protein-protein interactions. During the past decade, a variety of strategies have been extensively developed for the effective immobilization of proteins in terms of the orientation, density, and stability of immobilized proteins on analytical devices operating on different principles. In this review, recent advances and novel strategies in protein immobilization technologies developed for biosensors are briefly discussed, thereby providing an useful information for the selection of appropriate immobilization approach.
Protein immobilization;Biosensor;Gold surface;Orientation;Immobilization technique;
 Cited by
Y. Oh, Y. Lee, J. Heath, and M. Kim, IEEE Sensors J. 15, 637 (2015). crossref(new window)

F. Rusmini, Z. Zhong, and J. Feijen, Biomacromolecules 8, 1775 (2007). crossref(new window)

Y. Jung, J. Y. Jeong, and B. H. Chung, Analyst 133, 697 (2008). crossref(new window)

J. E. Butler, L. Ni, W. R. Brown, K. S. Joshi, J. Chang, B. Rosenberg, and E. W. J. Voss, Mol. Immunol. 30, 1165 (1993). crossref(new window)

C. Jianrong, M. Yuqing, H. Nongyue, W Xiaohua, L Sijiao, Biotechnol. Adv. 22, 505 (2004). crossref(new window)

S. O. Jung, H. S. Ro, B. H. Kho, Y. B. Shin, M. G. Kim, and B. H. Chung, Proteomics 5, 4427 (2005). crossref(new window)

H. B. Pyo, Y. B. Shin, M. G. Kim, and H. C. Yoon, Langmuir 21, 166 (2005). crossref(new window)

J. Homola, Anal. Bioanal. Chem. 377, 528 (2003). crossref(new window)

M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003). crossref(new window)

J. Nilsson, S. Stahl, J. Lundeberg, M. Uhlen, and P. Nygren, Protein Express. Purif. 11, 1 (1997). crossref(new window)

J. M. Jung, Y. B. Shin, M. G. Kim, H. S. Ro, H. T. Jung, and B. H. Chung, Anal. Biochem. 330, 251 (2004). crossref(new window)

T. H. Ha, S. O. Jung, J. M. Lee, K. Y. Lee, Y. Lee, J. S. Park, and B. H. Chung, Anal. Chem. 79, 546 (2007). crossref(new window)

S. M. Patrie, and M. Mrksich, Anal. Chem. 79, 5878 (2007). crossref(new window)

D. Gao, N. McBean, J. S. Schultz, Y. Yan, A. Mulchandani, and W. Chen, J. Am. Chem. Soc. 128, 676 (2006). crossref(new window)

Y. Jung, J. M. Lee, H. Jung, and B. H. Chung, Anal. Chem. 79, 6534 (2007) crossref(new window)

J. Park, H. H. Nguyen, A. Woubit, and M. Kim, Appl. Sci. Converg. Technol. 23, 61 (2014). crossref(new window)

J. M. Kogot, H. J. England, G. F. Strouse, and T. M. Logan, J. Am. Chem. Soc. 130, 16156 (2008). crossref(new window)

P. Peluso, D. S. Wilson, D. Do, H. Tran, M. Venkatasubbaiah, D. Quincy, B. Heidecker, K. Poindexter, N. Tolani, M. Phelan, K. Witte, L. S. Jung, P. Wagner, and S. Nock, Anal. Biochem. 312, 113 (2003). crossref(new window)

M. Cretich, F. Damin, G. Pirri, and M. Chiari, Biomol. Eng. 23, 77 (2006). crossref(new window)

I. Vikholm-Lundin, and W. M. Albers, Biosens. Bioelectron. 21, 1141 (2006). crossref(new window)

B. Y. Kim, C. B. Swearingen, J. A. Ho, E. V. Romanova, P. W. Bohn and J. V. Sweedler, J. Am. Chem. Soc. 129, 7620 (2007). crossref(new window)

J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007). crossref(new window)

E. J. Franco, H. Hofstetter, and O. Hofstetter, J. Sep. Sci. 29, 1458 (2006). crossref(new window)

R. Danczyk, B. Krieder, A. North, T. Webster, H. Hogenesch, and A. Rundell, Biotechnol. Bioeng. 84, 215 (2003). crossref(new window)

C. M. Niemeyer, Trends Biotechnol. 20, 395 (2002). crossref(new window)

C. Boozer, J. Ladd, S. Chen, Q. Yu, J. Homola, and S. Jiang, Anal. Chem. 76, 6967 (2004). crossref(new window)

C. Boozer, J. Ladd, S. Chen, and S. Jiang, Anal. Chem. 78, 1515 (2006). crossref(new window)

R. C. Bailey, G. A. Kwong, C. G. Radu, O. N. Witte, and J. R. Heath, J. Am. Chem. Soc. 129, 1959 (2007). crossref(new window)

R. Wacker, C. M. Niemeyer, Chembiochem. 5, 453 (2004). crossref(new window)

I. H. Cho, E. H. Paek, H. Lee, J. Y. Kang, T. S. Kim, and S. H. Paek, Anal. Biochem. 365, 14 (2007). crossref(new window)

E. J. Jeong, Y. S. Jeong, K. Park, S. Y. Yi, J. Ahn, S. J. Chung, M. Kim, and B. H. Chung, J. Biotechnol. 135, 16 (2008). crossref(new window)

L. E. Schaufler, and R. E. Klevit, J. Mol. Biol. 329, 931 (2003). crossref(new window)

D. Hao, M. Ohme-Takagi, and K. Yamasaki, FEBS Lett. 536, 151 (2003). crossref(new window)

M. Oda, K. Furukawa, A. Sarai, and H. Nakamura, FEBS Lett. 454, 288 (1999). crossref(new window)

E. Maillart, K. Brengel-Pesce, D. Capela, A. Roget, T. Livache, M. Canva, Y. Levy, and T. Soussi, Oncogene 23, 5543 (2004). crossref(new window)

S. A. Johnston, M. J. Zavortink, C. Debouck, and J. E. Hopper, Proc. Natl. Acad. Sci. USA 83, 6553 (1986). crossref(new window)

R. Brent, and M. Ptashne, Nature 312, 612 (1984). crossref(new window)

K. Park, J. M. Lee, Y. Jung, T. Habtemariam, A. Woubit, C. D. Fermin, and M. Kim, Analysis 136, 2506 (2011).

E. K. O'Shea, J. D. Klemm, P. S. Kim and T. Alber, Science 254, 539 (1991). crossref(new window)

P. B. Harbury, T. Zhang, P. S. Kim, and T. Alber, Science 262, 1401 (1993). crossref(new window)