JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Oxygen Flux on FTO Thin Films Using DC and RF Sputtering
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Oxygen Flux on FTO Thin Films Using DC and RF Sputtering
Park, Eun Mi; Lee, Dong Hoon; Suh, Moon Suhk;
  PDF(new window)
 Abstract
Transparent conductive oxides (TCOs) are essential material in optoelectronics such as solar cells, touch screens and light emitting diodes. Particularly TCOs are attractive material for infrared cut off film due to their high transparency in the visible wavelength range and high infrared reflectivity. Among the TCO, Indium tin oxide has been widely used because of the high electrical conductivity and transparency in the visible wavelength region. But ITO has several limitations; expensive and low environmental stability. On the other hands, fluorine doped tin oxide (FTO) is well known for low cost, weather ability and stable in acidic and hydrogen. In this study, two different magnetron sputtering techniques with RF and DC modes at room temperature deposition of FTO thin film was conducted. The change of oxygen content is influence on the topography, transmittance and refractive index.
 Keywords
FTO;sputtering;
 Language
English
 Cited by
1.
Fabrication of transparent conductive tri-composite film for electrochromic application, Applied Surface Science, 2017, 425, 1006  crossref(new windwow)
 References
1.
Y. Okuhara, T. Kato, H. Matsubara, N. Isu, M. Takata, Thin solid films, 519, 2280 (2011). crossref(new window)

2.
E. Fortunato, D. Ginley, H. Hosono, D. C. Paine, MRS Bull, 32, 242 (2007). crossref(new window)

3.
B. Zhang, Y. Tian, J. Zhang, W. Cai, Optoelectronics and advanced materials-rapid communications, 4, 1158 (2011).

4.
Z. M. Jarzebski, J. P. Marton, J. Electrochem. Soc, 123, 199C, (1976). crossref(new window)

5.
K. S. Ramaih, V. S. Raja, Appl. Sur. Sci., 253, 1451 (2006). crossref(new window)

6.
H. Kim, R.C.Y. Auyeung, A. Pique, Thin solid films, 516, 5052 (2008). crossref(new window)

7.
B. H. Liao, C. C. Kuo, P. J. Chen, C. C. Lee, Appl. Opt., 50, C160 (2011).

8.
J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, Phys. Rev. B, 68, 155410 (2003). crossref(new window)

9.
H.C. Lee, J.Y. Seo, Y.W. Choi, D.W. Lee, Vacuum, 72, 269 (2004).

10.
M. Quaas, H. Steffen, R. Hippler, H. Wulff, Surf. Sci., 540, 337 (2003). crossref(new window)

11.
P. F. Carcia, R. S. McLean, M. H. Reilly, Z. G. Li, L. J. Pillione, R. F. Messier, Appl. Phys. Lett. 81, 1800 (2002). crossref(new window)

12.
J. C. Hsu, U. S. Chiang, ISRN Materials science, 2013, 710798 (2013).

13.
S. H. Huang, P.H. Cheng, Y. Y. Chen, Chin. Phys. B, 22, 027701 (2013). crossref(new window)

14.
Y. C. Liang, Appl. Phys A, 97, 249 (2009).

15.
H. N. Cui, V. Teixeira, L. J. Meng, R. Martins, E. Fortunato, Vacuum, 82, 1507 (2008). crossref(new window)

16.
H. N. Cui, V. Teixeira, A. Monteiro, Vacuum, 67, 589 (2002). crossref(new window)

17.
Q. H. Li, D. Zhu, W. Liu, Y. Liu, X. C. Ma, Appl. Surf. Sci., 254, 2922 (2008). crossref(new window)

18.
W. F. Wu, W. S. Chiou, Thin solid films, 298, 221 (1998).