Advanced SearchSearch Tips
Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate
Cho, Jumi; Jung, Daesung; Kim, Yooseok; Song, Wooseok; Adhikari, Prashanta Dhoj; An, Ki-Seok; Park, Chong-Yun;
  PDF(new window)
The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on /Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/ substrate. Both p-type and n-type graphene on the patterned SAM/ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid () gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.
Graphene;Self-assembled monolayers;Field effect transistors;3-aminopropyltriethoxysilane;
 Cited by
Lattice Transparency of Graphene, Nano Letters, 2017, 17, 3, 1711  crossref(new windwow)
Simple Interface Engineering of Graphene Transistors with Hydrophobizing Stamps, ACS Applied Materials & Interfaces, 2016, 8, 23, 14307  crossref(new windwow)
A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007). crossref(new window)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004). crossref(new window)

N. Stander, B. Huard, and D. Goldhaber-Gordon, Phys. Rev. Lett. 102, 026807 (2009). crossref(new window)

A. F. Young and P. Kim, Nature Phys. 5, 222 (2009). crossref(new window)

G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984). crossref(new window)

X. Du, I. skachko, A. Barker and E. Y. Andrei, Nat. Nanotech. 3, 491 (2008). crossref(new window)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science 324, 1312 (2009). crossref(new window)

Q. He, H. G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang, ACS Nano 4, 3201 (2010). crossref(new window)

L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, Science 335, 947 (2012). crossref(new window)

S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Ozyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotech. 5, 574 (2010). crossref(new window)

B. Guo, L. Fang, B. Zhang, and J. R. Gong, Insciences J. 1, 80 (2011).

K. Yokota, K. Takai, and T. Enoki, Nano Lett. 11, 3669 (2011). crossref(new window)

L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare and C. N. R. Rao, Adv. Mater. 21, 4726 (2009).

N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, Carbon 48, 255 (2010). crossref(new window)

H. Medina, Y. -C. Lin , D. Obergfell , and P. -W. Chiu, Adv. Funct. Mater. 21, 2687 (2011). crossref(new window)

D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, and G. Yu, Nano Lett. 9, 1752 (2009). crossref(new window)

Y. Wang, Y. Shao, D. W. Matson, J. Li, and Y. Lin, ACS Nano 4, 1790 (2010). crossref(new window)

D. B. Farmer, R. Golizadeh-Mojarad, V. Perebeinos, Y. -M. Lin, G. S. Tulevski, J. C. Tsang, and P. Avouris, Nano Lett. 9, 388 (2008).

J. Park, W. H. Lee, S. Huh, S. H. Sim, S. B. Kim, K. Cho, B. H. Hong, and K. S. Kim, J. Phys. Chem. Lett. 2, 841 (2011). crossref(new window)

A. Reina, H. Son, L. Jiao, B. Fan, M. S. Dresselhaus, Z. F. Liu, and J. Kong, J. Phys. Chem. C 112, 17741 (2008). crossref(new window)

A. E. Hooper, D. Werho, T. Hopson, and O. Palmer, Surf. Interface Anal. 31, 809 (2001). crossref(new window)

D. Kowalczyk, M. M. Chehimi, S. Slomkowski, and M. Delamar, Int. J. Adhes. Adhes. 16, 227 (1996). crossref(new window)

J. Baltazar, H. Sojoudi, S. A. Paniagua, J. Kowalik, S. R. Marder, L. M. Tolbert, S. Graham, and C. L. Henderson, J. Phys. Chem. C 116, 19095 (2012). crossref(new window)

L. Zhao, R. He, K. T. Rim, T. Schiros, K. S. Kim, H. Zhou, C. Gutierrez, S. P. Chockalingam, C. J. Arguello, L. Palova, D. Nordlund, M. S. Hybertsen, D. R. Reichman, T. F. Heinz, P. Kim, A. Pinczuk, G. W. Flynn, and A. N. Pasupathy, Science 333, 999 (2011). crossref(new window)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. K. Saha, U. V. Waghmare, K. S. novoselov, H. R. Krishnamurthy, A. K. Geim, A. C. Ferrari, And A. K. Sood, Nat. Nanotech. 3, 210 (2008). crossref(new window)

P. L. Levesque, S. S. Sabri, C. M. Aguirre, J. Guillemette, M. Siaj, P. Desjardins, T. Szkopek, and R. Martel, Nano Lett. 11, 132 (2011). crossref(new window)

Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L.C. Paulus, C.-J. Shih, M.-H. Ham, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, J. Kong, Pablo Jarillo-Herrero and M. S. Strano, Nature chemistry 4, 724-732 (2012). crossref(new window)

H. -Y. Chiu, V. Perebeinos, Y. -M. Lin, and P. Avouris, Nano Lett. 10, 4634 (2010). crossref(new window)