JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Optical Properties of InP/InGaP Quantum Structures Grown by a Migration Enhanced Epitaxy with Different Growth Cycles
Oh, Jae Won; Cho, Il-Wook; Ryu, Mee-Yi; Song, Jin Dong;
  PDF(new window)
 Abstract
InP/InGaP quantum structures (QSs) were grown on GaAs (001) substrates by a migration-enhanced molecular beam epitaxy method. Temperature-dependent photoluminescence (PL) and emission wavelength-dependent time-resolved PL (TRPL) were performed to investigate the optical properties of InP/InGaP QSs as a function of migration enhanced epitaxy (MEE) growth cycles from 2 to 8. One cycle for the growth of InP QS consists of 2-s In and 2-s P supply with an interruption time of 10 s after each source supply. As the MEE growth cycle increases from 2 to 8, the PL peak is redshifted and exhibited different (larger, comparable, or smaller) bandgap shrinkages with increasing temperature compared to that of bulk InP. The PL decay becomes faster with increasing MEE cycles while the PL decay time increases with increasing emission wavelength. These PL and TRPL results are attributed to the different QS density and size/shape caused by the MEE repetition cycles. Therefore, the size and density of InP QSs can be controlled by changing the MEE growth cycles.
 Keywords
InP;Quantum structure;Photoluminescence;Time-resolved photoluminescence;
 Language
English
 Cited by
1.
Photoluminescence Studies of InP/InGaP Quantum Structures Grown by a Migration Enhanced Molecular Beam Epitaxy,;;;

Applied Science and Convergence Technology, 2016. vol.25. 4, pp.81-84 crossref(new window)
1.
Photoluminescence Studies of InP/InGaP Quantum Structures Grown by a Migration Enhanced Molecular Beam Epitaxy, Applied Science and Convergence Technology, 2016, 25, 4, 81  crossref(new windwow)
2.
Luminescence properties of InP/InGaP quantum structures grown by using a migration-enhanced epitaxy at different growth temperatures, Journal of the Korean Physical Society, 2017, 70, 8, 785  crossref(new windwow)
 References
1.
M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, Phys. Rev. B, 69, 235332 (2004). crossref(new window)

2.
J. P. Reithmaier, A. Somers, S. Deubert, R. Schwertberger, W. Kaiser, A. Forchel, M. Calligaro, P. Resneau, O. Parillaud, S. Bansropun, M. Krakowski, R. Alizon, D Hadass, A Bilenca, H. Dery, V. Mikhelashvili, G. Eisenstein, M. Gioannini, I. Montrosset, T. W. Berg, M. van der Poel, J. Mork, and B. Tromborg, J. Phys. D: Appl. Phys. 38, 2088 (2005).

3.
C. Chen, Y. Wang, H. S. Djie, B. S. Ooi, L. F. Lester, T. L. Koch, and J. C. M. Hwang, IEEE J. Sel. Topics Quantum Electron. 17, 1167 (2011). crossref(new window)

4.
D. Zhou, P. E. Vullum, G. Sharma, S. F. Thomassen, R. Holmestad, T. W. Reenaas, and B. O. Fimland, Appl. Phys. Lett. 96, 083108 (2010). crossref(new window)

5.
S. K. Ha, J. D. Song, I. K. Han, D. Y. Ko, S. Y. Kim, and E. H. Lee, J. Korean Phys. Soc. 59, 3089 (2011). crossref(new window)

6.
P. M. Smowton, S. N. Elliott, S. Shutts, M. S. Al-Ghamdi, and A. B. Krysa, IEEE J. Sel. Topics Quantum Electron. 17, 1343 (2011). crossref(new window)

7.
E. Koroknay, W.-M. Schulz, M. Eichfelder, R. RoBbach, M. Jetter, and P. Michler, J. Phys.: Conf. Series, 245, 012077 (2010). crossref(new window)

8.
S. N. Elliott, P. M. Smowton, A. B. Krysa, and R. Beanland, Semicond. Sci. Technol. 27, 094008 (2012). crossref(new window)

9.
R. Rödel, A. Bauer, S. Kremling, S. Reitzenstein, S. Hofling, M. Kamp, L. Worschech, and A. Forchel, Nanotech. 23, 015605 (2012). crossref(new window)

10.
H. R. Byun, M.-Y. Ryu, J. D. Song, and C.-L. Lee, J. Korean Phys. Soc. 66, 811 (2015). crossref(new window)

11.
H. Y. Kim, M-Y. Ryu, and J. S. Kim, J. Lumine. 132, 1759 (2012). crossref(new window)

12.
S. R. Kwon, M.-Y. Ryu, and J. D. Song, Appl. Sci. Converg. Tech. 23, 387 (2014). crossref(new window)

13.
J. W. Oh, H. R. Byun, M.-Y. Ryu, and J. D. Song, J. Korean Vac. Soc. 22, 92 (2013). crossref(new window)

14.
D. Richter, R. RoBbach, W.-M. Schulz, E. Koroknay, C. Kessler, M. Jetter, and P. Michler, Appl. Phys. Lett. 97, 063107 (2010). crossref(new window)

15.
S. Y. Kim, J. D. Song, I. K. Han, and T. W. Kim, J. Nanosci. Nanotech. 12, 5519 (2012). crossref(new window)

16.
P. Podemski, R. Kudrawiec, J. Misiewicz, A. Somers, R. Schwertberger, J. P. Reithmaier, and A. Forchel, Appl. Phys. Lett. 89, 151902 (2006). crossref(new window)

17.
Y.P. Varshni, Physica, 34, 149 (1967). crossref(new window)

18.
M. E. Levinshten, S.L. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters, Volume 1: Si, Ge, C (Diamond), GaAs,GaP, GaSb, InAs, InP, InSb (World Scientific, London, 1996).

19.
Y. C. Zhang, C. J. Huang, F. Q. Liu, B. Xu, J. Wu, Y. H. Chen, D. Ding, W. H. Jiang, X. L. Ye, and Z. G. Wang, J. Appl. Phys. 90, 1973 (2001). crossref(new window)

20.
Y-F. Wu, J. C. Lee, T-E. Nee, and J-C. Wang, J. Lumine. 131, 1267 (2011). crossref(new window)

21.
L. M. Kong, J. F. Cai, Z. Y. Wu, Z. Gong, Z. C. Niu, and Z. C. Feng, Thin Solid Films, 498, 188 (2006). crossref(new window)

22.
T. E. J. Campbell-Ricketts, N. A. J. M. Kleemans, R. Notzel, A. Y. Silov, and P. M. Koenraad, Appl. Phys. Lett. 96, 033102 (2010). crossref(new window)

23.
H. J. Lee, M-Y. Ryu, and J. S. Kim, J. Appl. Phys. 108, 093521 (2010). crossref(new window)