JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide
Jang, Min-Ho; Ha, Hyun Dong; Seo, Tae Seok; Cho, Yong-Hoon;
  PDF(new window)
 Abstract
The graphene oxide (GO) and graphene oxide quantum dots (GOQDs), which have gained research interest as new types of light-emitting materials, were synthesized by the modified Hummers method for oxidation of graphite flake and graphite nanoparticle. The optical properties of GO and GOQDs have been compared by mean of photoluminescence (PL), PL excitation (PLE), UV-vis absorbance, and time-resolved PL. The GO have an absorption peak at 229 nm and shoulder part at 310 nm, whereas the GOQDs show broad absorption with a gradual change up without any absorption peaks. The PL emission of GOQDs and GO showed the green color at 520 nm and the red color at 690 nm, respectively. The red emission of GO showed faster PL decay time than the green emission of GOQDs. In particular, the temporal PL profile of the GO showed redshift from 560 nm to 660 nm after the pump event.
 Keywords
Graphene oxide;Graphene quantum dot;Graphene oxide quantum dot;Photoluminescence;Time-resolved photoluminescence;
 Language
English
 Cited by
1.
Structural, electrical, and acoustical properties of graphene oxide films for acoustoelectronic applications, physica status solidi (a), 2017, 214, 8, 1600757  crossref(new windwow)
 References
1.
A. K. Geim, Science 324, 1530 (2009). crossref(new window)

2.
T. Gokus, R. R. Nair, A. Bonetti, M. Böhmler, A. Lombardo, K. S. Novoselov, A. K. Geim, A. C. Ferrari, and A. Hartschuh, ACS Nano 3, 3963 (2009). crossref(new window)

3.
D. Pan, J. Zhang, Z. Li, and M. Wu, Adv. Mater. 22, 734 (2010). crossref(new window)

4.
J. Shen, Y. Zhu, X. Yang, and C. Li, Chem. Commun. 48, 3686 (2012). crossref(new window)

5.
H. Sun, L. Wu, W. Wei, and X. Qu, Materials Today 16, 433 (2013). crossref(new window)

6.
J. Peng, W. Gao, B. K. Gupta, Z. Liu, R. R. Aburto, L. Ge, L. Song, L. B. Alemany, X. Zhan, G. Gao, S. A. Vithayathil, B. A. Kaipparettu, A. A. Marti, T. Hayashi, J. J. Zhu, and P. M. Ajayan, Nano Lett. 12, 844 (2012). crossref(new window)

7.
S. Kim, S. W. Hwang, M. K. Kim, D. Y. Shin, D. H. Shin, C. O. Kim, S. B. Yang, J. H. Park, E. Hwang, S. H. Choi, G. Ko, S. H. Sim, C. Sone, H. J. Choi, S. Bae, and B. H. Hong, ACS Nano 6, 8203 (2012). crossref(new window)

8.
S. H. Song, M.-H. Jang, J. Chung, S. H. Jin, B. H. Kim, S.-H. Hur, S. Yoo, Y.-H. Cho, and S. Jeon, Adv. Optical Mater. 2, 1016 (2014). crossref(new window)

9.
F. Liu, M.-H. Jang, H. D. Ha, J.-H. Kim, Y.-H. Cho, and T. S. Seo, Adv. Mater. 25, 3657 (2013). crossref(new window)

10.
M.-H. Jang, H. D. Ha, E.-S. Lee, F. Liu, Y.-H. Kim, T. S. Seo, and Y.-H. Cho, Small 2015, DOI: 10.1002/smll.201500206. crossref(new window)

11.
S. Umrao, M.-H. Jang, J.-H. Oh, G. Kim, S. Sahoo, Y.-H. Cho, A. Srivastva, and I.-K. Oh, Carbon 81, 514 (2015). crossref(new window)

12.
F. Liu, and T. S. Seo, Adv. Funct. Mater. 20, 1930 (2010). crossref(new window)

13.
H. D. Ha, M.-H. Jang, F. Liu, Y.-H. Cho, and T. S. Seo, Carbon 81, 367 (2015). crossref(new window)

14.
K. F. Mak, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 106, 046401 (2011). crossref(new window)

15.
D. Li, M. B. Müller, S. Gilje, R. B. Kaner, and G. G. Wallace, Nat. Nanotech. 3, 101 (2008). crossref(new window)

16.
U. Lange, T. Hirsch, V. M. Mirsky, and O. S. Wolfbeis, Electrochimica Acta 56, 3707 (2011). crossref(new window)

17.
C.-T. Chien, S.-S. Li, W.-J. Lai, Y.-C. Yeh, H.-A. Chen, I-S. Chen, L.-C. Chen, K.-H. Chen, T. Nemoto, S. Isoda, M. Chen, T Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.-W. Chen, Angew. Chem. Int. Ed. 51, 6662 (2012). crossref(new window)