JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Introduction to Helium Leak Detection Techniques for Cryogenic Systems
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Introduction to Helium Leak Detection Techniques for Cryogenic Systems
Kim, Heetae; Chang, Yong Sik; Kim, Wookang; Jo, Yong Woo; Kim, Hyung Jin;
  PDF(new window)
 Abstract
Many welding processes are performed to construct cryogenic system. Leak-tight for the cryogenic system is required at low temperature environment. Helium leak detection techniques are commonly used to find leak for the cryogenic system. The helium leak detection techniques for spraying, sniffing and pressurizing techniques are introduced. High vacuum is also necessary to use helium leak detector. So, types of fluid flow, effective temperature, conductance and pumping speed are introduced for vacuum pumping. Leak test procedure is shown for pipe welding, cryomodule and low temperature test. Cryogenic seals which include copper gasket, helicoflex gasket and indium are investigated.
 Keywords
Leak detection;Cryogenic system;Welding;Cryogenic seals;Conductance;
 Language
English
 Cited by
1.
Vacuum Test of Cavity with Liquid Nitrogen,;;;

Applied Science and Convergence Technology, 2015. vol.24. 5, pp.132-135 crossref(new window)
2.
Low Temperature Test of HWR Cryomodule,;;;;;

Applied Science and Convergence Technology, 2016. vol.25. 3, pp.47-50 crossref(new window)
1.
Vacuum Test of Cavity with Liquid Nitrogen, Applied Science and Convergence Technology, 2015, 24, 5, 132  crossref(new windwow)
2.
Low Temperature Test of HWR Cryomodule, Applied Science and Convergence Technology, 2016, 25, 3, 47  crossref(new windwow)
 References
1.
H. Kim, K. Seo, B. Tabbert, and G.A. Williams, Journal of Low Temperature Physics 121, 621-626 (2000).

2.
H. Kim, K. Seo, B. Tabbert, and G.A. Williams, Europhysics Letters 58, 395-400 (2002). crossref(new window)

3.
H. Kim, P. A. Lemieux, D. J. Durian, and G.A. Williams, Phys. Rev. E 69, 0614081-0614084 (2004).

4.
W. Steckelmacher and M.W. Lucas, J. Phys. D: Appl. Phys., 16, 1453-1460 (1983). crossref(new window)

5.
L. Fustoss and G Toth, Vacuum, 40, 43-46 (1990). crossref(new window)

6.
B.V. Zhmud, F. Tiberg and K. Hallstensson, Journal of Colloid and Interface Science, 228, 263-269 (2000). crossref(new window)

7.
G.Y. Hsiung, C.C. Chang, Y.C. Yang, C.H. Chang, H.P. Hsueh, S.N. Hsu and J.R. Chen, Applied Science and Convergence Technology, 23, 309-316 (2014). crossref(new window)

8.
S. J.Yu, S. J. Youn, and H. Kim, Physica B 405, 638-641 (2010). crossref(new window)

9.
H. Kim, S. C. Lim, and Y. H. Lee, Physics Letters A 375, 2661-2664 (2011). crossref(new window)

10.
H. Kim, S. J. Youn, and S. J. Yu, Journal of the Korean Physical Society 56, 554-557(2010). crossref(new window)

11.
H. Kim, M.S. Han, D. Perello, and M. Yun, Infrared Physics & Technology 60, 7-9 (2013). crossref(new window)

12.
H. Kim, C.S. Park, and M.S. Han, Optics Communications 325, 68-70 (2014). crossref(new window)

13.
H. Kim, W. K. Kim, G.T. Park, C. S. Park, and H. D. Cho, Infrared Physics &Technology 67, 49-51(2014). crossref(new window)

14.
H. Kim, W. K. Kim, G.T. Park, I. Shin, S. Choi and D. O. Jeon, Infrared Physics & Technology 67, 600-603 (2014). crossref(new window)