JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Failure Analysis of Filaments of Quadrupole Mass Spectrometer for Plasma Process Monitoring
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Failure Analysis of Filaments of Quadrupole Mass Spectrometer for Plasma Process Monitoring
Ha, Sung Yong; Kim, Dong Hoon; Joo, Junghoon;
  PDF(new window)
 Abstract
A failure analysis of tungsten filaments used in quadrupole mass spectrometer for plasma process monitoring was carried by using SEM and EDS. Failed at high temperature, filaments showed two kinds of failure modes. The one is that diameter of filament became thinner gradually and finally snapped. The other is that filament abruptly snapped almost at a right angle. The EDS analysis showed Fe and C, including W and Fe, on the surface of failed filament. when failed filaments were treated with plasma in mixture of Ar and , the amount of Fe and C decreased. The failure analysis of filament showed that the cause of filament failure is thermal evaporation and grain growth of tungsten at high temperature.
 Keywords
QMS;Tungsten filament;Failure;Thermal evaporation;Grain growth;
 Language
English
 Cited by
 References
1.
W. D KLOPP AND P. L. RAFFO, NASA TN D-2503 (1964).

2.
W. D KLOPP AND P. L. RAFFO, NASA TN D-3483 (1966).

3.
Dr. tech. sci. Prof. E. M. Savitskii, Metal Science and Heat Treatment of Metals, 2, 483-486 (1960). crossref(new window)

4.
A. Gilbert, Journal of the Less-Common Meatls, 10, 328-343 (1966). crossref(new window)

5.
Stefan Wurster, Bernd Gludovartz, Reinhard Pippan, Int. Journal of Refractory Metals and Materials, 28, 692-697 (2010). crossref(new window)

6.
D. Richard, Photon International 11, 190 (2009).

7.
U. Kroll, A. Shah, H. Keppner, J. Meier, P. Torres, D. Fisher, Sol. Energy Mater. Sol.Cells 48, 343 (1997). crossref(new window)

8.
Y. Sobajima, M. Nishino, T. Fukumori, M. Kurihara, T. Higuchi, S. Nakano, T. Toyama, H. Okamoto, Sol. Energy Mater. Sol. Cells 93, 980 (2009). crossref(new window)

9.
T. Matsui, A. Matsuda, M. Kondo, Sol. Energy Mater. Sol. Cells 90, 3199 (2006). crossref(new window)

10.
L. Li, Y.M. Li, J.A. Anna Selvan, A.E. Delahoy, R.A. Levy, J. Non-Cryst. Solids 347, 106 (2004). crossref(new window)

11.
B. Rech, T. Roschek, T. Repmann, J. Muller, R. Schmitz, W. Appenzeller, Thin Solid Films 427, 157 (2003). crossref(new window)

12.
A. N. Christensen J. Cryst. Growth 129, 266 (1993). crossref(new window)

13.
K. Luey, Metallurgical Transaction, 22A, 2077 (1991).

14.
Jonathan H. Batey, Vacuum, 101, 410-145 (2014). crossref(new window)

15.
Mathew Peet, 4th YEAR M. ENG, University of Sheffield (2008).

16.
Frohnerg and Adam, Thin Solid Films 25, 525-530 (1975). crossref(new window)

17.
P. Adam, H. Wever, Surface Science, 21, 307-323 (1970). crossref(new window)

18.
J. Lepage, A. Mezin, M. Nivoit, 161, 255-277 (1984).

19.
E.O. Hall Proc. Phys. Soc., 643, 747 (1951).

20.
N. J., J. Iron Steel Inst. 173, 25 (1953).

21.
Inficon CPM training material, Inficon 2011.

22.
Air Liquide Korea, Materials Safety Data Sheet.