Advanced SearchSearch Tips
Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Enhancement of Size Gradient of Imprinted Nanopattern by Plasma Etching under a Nonuniform Magnetic Field
Lim, Jonghwan; Kim, Soohyun; Kim, Da Sol; Jeong, Mira; Lee, Jae-Jong; Yun, Wan Soo;
  PDF(new window)
We report a simple way to enhance the size gradient of an imprinted nanopattern through oxygen plasma etching under a nonuniform magnetic field. A sample substrate was placed next to a magnet, and then a nonuniform magnetic field condition was formed around the sample. Using oxygen plasma etching, a line pattern having an initial width of 273 nm was gradually modified from 248 nm at one end to 182 nm at the other end. Controlling the arrangement of the magnet and sample, we could induce a triangular shape size gradient. We verified that the gradually modified nanopatterns we produced are applicable to continual optical property control, showing a possibility to be utilized for optical components such as gratings and polarizers.
Imprint;Nanopattern;Magnetic field;Oxygen plasma;Etching;
 Cited by
S.-W. Ahn, K.-D. Lee, J.-S Kim, S. H. Kim, J.-D. P, S.-H. Lee, and P.-W. Yoon, Nanotechnology 16, 1874 (2005). crossref(new window)

C. Trompoukis, O. E. Daif, V. Depauw, I. Gordon, and J. Poortmans, Appl. Phys. Lett. 101, 103901 (2012). crossref(new window)

Y. J. Shin, C. Pina-Hernandez, Y.-K. Wu, J. G. Ok, and L. J. Guo, Nanotechnology 23, 344018 (2012). crossref(new window)

J. L. Skinner, L. L. Hunter, A. A. Talin, J. Provine, and D. A. Horsley, IEEE Trans. Nanotechnol. 7, 527 (2008). crossref(new window)

M.-G. Kang, H. J. Park, S. H. Ahn, L. J. Guo, Sol. Energy Mater. Sol. Cells 94, 1179 (2010). crossref(new window)

Z. Chen, B. Cotterell, W. Wang, E. Guenther, S.-J. Chua, Thin Solid Films 394, 202 (2001).

J. O. Ok, M. K. Kwak, C. M. Huard, H. S. Youn, and L. J. Guo, Adv. Mater. 25, 6554 (2013). crossref(new window)

M. E. Garah, N. Marets, M. Mauro, A. Aliprandi, S. Bonacchi, L. D. Cola, A. Ciesielski, V. Bulach, M. W. Hosseini, and P. Samori, J. An. Che. Soc., 137, 8450 (2015). crossref(new window)

M. K. Kwak, J. G. Ok, J. Y. Lee, and L. J. Guo, Nanotechnology 23, 344008 (2012). crossref(new window)

W. A. Luhman, and R. J. Holmes, Adv. Funct. Mater. 21, 764 (2011). crossref(new window)

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, Nat. Commun. 59, 1 (2010).

C. Battaglia, J. Escarre, K. Soderstrom, L. Erni, L. Ding, G. Bugnon, A. Billet, M. Boccard, L. Barraud, S. D. Wolf, F.-J. Haug, M. Despeisse, and C. Ballif, Nano Lett. 11, 661 (2011). crossref(new window)

K.-T. Lee, J.-H. Park, S. J. Kwon, H.-K. Kwon, J. Kyhm, K.-W. Kwak, H. S. Jang, S. Y. Kim, J. S. Han, S.-H. Lee, D.-H. Shin, H. Ko, I.-K. Han, B.-K. Ju, S.-H. Kwon, and D.-H. Ko, Nano Lett. 15, 2491-2497 (2015). crossref(new window)

D. Kim, S.-B. Jeon, J. Y. Kim, M.-L. Seol, S. O. Kim, Y.-K. Choi, Nano Energy, 12, 331 (2015). crossref(new window)

S.-W. Lee, K.-S. Lee, J. Ahn, J.-J Lee, M.-G. Kim, and Y.-B. Shin, ACS Nano 5, 897 (2011). crossref(new window)

A. Cattoni, P. Ghenuche, A.-M Haghiri-Gosnet, D. Decanini, J. Chen, J.-L Pelouard, and S. Collin, Nano Lett. 11, 3557 (2011). crossref(new window)

F. Fernandez, O. G. Lopez, E. Tellechea, A. C. Asensio, J. F. Moran, and I. Cornago, IEEE Trans. Nanotechnol. 13, 308 (2014). crossref(new window)

J. Lee, S. Cho, J. Lee, H. Ryu, J. Park, S. Lim, b. Oh, C. Lee, W. Huang, A. Busnaina, H. Lee, J. Biotechnol., 168, 584-588 (2013). crossref(new window)

C.-W. Kuo, J.-Y. Shiu, and P. Chen, Chem. Mater. 15, 2917 (2003). crossref(new window)

C. Pina-Hernandez, P.-F. Fu, and L. J. Guo, ACS Nano 5, 923 (2011). crossref(new window)

D. K. Park, A. Kang, M. Jeong, J.-J Lee, and W. S. Yun, Thin Solid Films 567, 54 (2014). crossref(new window)

Y. Ding, H. J. Qi, K. J. Alvine, H. W. Ro, D. U. Ahn, S. Lin-Gibson, J. F. Douglas, and C. L. Soles, Macromolecules 43, 8191 (2010). crossref(new window)

P. Falstad, Electrodynamics Simulation (TM), (27 July 2015).