JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication and Simulation of Fluid Wing Structure for Microfluidic Blood Plasma Separation
Choe, Jeongun; Park, Jiyun; Lee, Jihye; Yeo, Jong-Souk;
  PDF(new window)
 Abstract
Human blood consists of 55% of plasma and 45% of blood cells such as white blood cell (WBC) and red blood cell (RBC). In plasma, there are many kinds of promising biomarkers, which can be used for the diagnosis of various diseases and biological analysis. For diagnostic tools such as a lab-on-a-chip (LOC), blood plasma separation is a fundamental step for accomplishing a high performance in the detection of a disease. Highly efficient separators can increase the sensitivity and selectivity of biosensors and reduce diagnostic time. In order to achieve a higher yield in blood plasma separation, we propose a novel fluid wing structure that is optimized by COMSOL simulations by varying the fluidic channel width and the angle of the bifurcation. The fluid wing structure is inspired by the inertial particle separator system in helicopters where sand particles are prevented from following the air flow to an engine. The structure is ameliorated in order to satisfy biological and fluidic requirements at the micro scale to achieve high plasma yield and separation efficiency. In this study, we fabricated the fluid wing structure for the efficient microfluidic blood plasma separation. The high plasma yield of 67% is achieved with a channel width of in the fabricated fluidic chip and the result was not affected by the angle of the bifurcation.
 Keywords
Microfluidics;Lab on a chip;Blood plasma separation;Diagnostics;
 Language
English
 Cited by
 References
1.
W. A. Al-Soud, and P. Radstrom, J. Clin. Microbiol. 39, 485 (2001). crossref(new window)

2.
P. Belgrader, W. Benett, D. Hadley, and J. Richards, Science 284, 449 (1999). crossref(new window)

3.
S. Haeberle, and R. Zengerle, Lab. Chip 7, 1094 (2007). crossref(new window)

4.
F. B. Myers, and L. P. Lee, Lab. Chip 8, 2015 (2008). crossref(new window)

5.
P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, and B. H. Weigl, Nature 442, 412 (2006). crossref(new window)

6.
B. Weigl, G. Domingo, P. LaBarre, and J. Gerlach, Lab. Chip 8, 1999 (2008). crossref(new window)

7.
S. Roy, J. H. Soh, and Z. Gao, Lab. Chip 11, 1886 (2011). crossref(new window)

8.
W. Sheng, O. O. Ogunwobi, T. Chen, J. Zhang, T. J. George, C. Liu, and Z. H. Fan, Lab. Chip 14, 89 (2014). crossref(new window)

9.
V. Linder, E. Verpoorte, N. F. de Rooij, H. Sigrist, and W. Thormann, Electrophoresis 23, 740 (2002). crossref(new window)

10.
T. A. Crowley, and V. Pizziconi, Lab. Chip 5, 922 (2005). crossref(new window)

11.
M. Kersaudy-Kerhoas, R. Dhariwal, M. P. Desmulliez, and L. Jouvet, Microfluid. Nanofluidics 8, 105 (2010). crossref(new window)

12.
F. Saeed, and A. Z. Al-Garni, J. Aircraft 44, 1150 (2007). crossref(new window)

13.
S. Kahp-Yang, J. Korean. Vac. Soc. 16, 65 (2007). crossref(new window)

14.
S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, J. Microelectromech. Syst. 14, 590 (2005). crossref(new window)

15.
Z. Geng, Y. Ju, W. Wang, Sensor and Actuator B: Chemical, 180, 122 (2013)

16.
R. Ramji, C. F. Cheong, H. Hirata, A. R. A. Rahman, and C. T. Lim, Small 11, 943 (2015). crossref(new window)

17.
N. Wongkaew, P. He, V. Kurth, W. Surareungchai, and A. J. Baeumner, Anal. Bioanal. Chem. 405, 5965 (2013). crossref(new window)

18.
K. Zhang, L.-B. Zhao, S.-S. Guo, B.-X. Shi, T.-L. Lam, Y.-C. Leung, Y. Chen, X.-Z. Zhao, H. L. Chan, and Y. Wang, Biosens. Bioelectron. 26, 935 (2010). crossref(new window)

19.
W.-Y. Chang, C.-H. Chu, and Y.-C. Lin, IEEE Sensors J. 8, 495 (2008). crossref(new window)

20.
G. G. Nestorova, V. L. Kopparthy, N. D. Crews, and E. J. Guilbeau, Anal. Methods 7, 2055 (2015). crossref(new window)