JOURNAL BROWSE
Search
Advanced SearchSearch Tips
PVP-assisted Synthesis of TiO2 Nanospheres and their Application to the Preparation of Superhydrophobic Surfaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
PVP-assisted Synthesis of TiO2 Nanospheres and their Application to the Preparation of Superhydrophobic Surfaces
Munkhbaatar, Naranchimeg; Ryu, Ilhwan; Park, Dasom; Yim, Sanggyu;
  PDF(new window)
 Abstract
Enhancement of the surface hydrophobicity of polydimethylsiloxane (PDMS) thin films deposited on substrates covered with titanium dioxide () nanospheres was studied. First, a low-temperature solution-phase method using polyvinylpyrrolidone (PVP) as a surface capping agent and a water/dimethylformamide (DMF) mixture as the reaction medium was used to synthesize monodisperse nanospheres. It was possible to easily control hydrolysis rate of the Ti-precursors and the size of the synthesized nanospheres by varying the amount of PVP and the volume ratio of the solvent mixture. Spray coating of the synthesized nanospheres under the PDMS film increased the water contact angle of the film surface to . This simple treatment can modify the surface morphology at a nanometer scale without any long or complicated nanoprocess; hence, the surface enters the superhydrophobic Cassie-Baxter regime.
 Keywords
Polyvinylpyrrolidone; nanospheres;Superhydrophobicity;Spray coating;
 Language
English
 Cited by
 References
1.
M. Gratzel, Nature, 414 (2001) 338. crossref(new window)

2.
M. R. Hoffmann, S. T. Martin, W. Y. Choi, and D. W. Bahnemann, Chem. Rev., 95 (1995) 69. crossref(new window)

3.
A. L. Linsebigler, G. Lu, and J. T. Yates Jr., Chem. Rev., 95 (1995) 735. crossref(new window)

4.
M. Millis and S. Le Hunte, J. Photochem. Photobiol A, 108 (1997) 1. crossref(new window)

5.
S. Wang, Y. Ding, S. Xu, Y. Zhang, G. Li, L. Hu, and S. Dai, Chem. Eur. J., 20 (2014) 4916. crossref(new window)

6.
D. Chen, F. Huang, Y-B. Cheng, and R. A. Caruso, Adv. Mater., 21 (2009) 2206. crossref(new window)

7.
J. T. Park, D. K. Roh, R. Patel, E. Kim, D. Y. Ryu, and J. H. Kim, J. Mater. Chem., 20 (2010) 8521. crossref(new window)

8.
X. Wu, G. Q. Lu, and L. Wang, Energy Environ. Sci., 4 (2011) 3565. crossref(new window)

9.
M. Sasidharan, K. Nakashima, N. Gunawardhana, T. Yokoi, M. Inoue, S. Yusa, M. Yoshino, and T. Tatsumi, Chem. Comm., 47 (2011) 6921 crossref(new window)

10.
T. Sun, L. Feng, X. Gao, and L. Jiang, Acc. Chem. Res., 38 (2005) 644. crossref(new window)

11.
T. Darmanin, M. Nicolas, and F. Guittard, Phys. Chem. Chem. Phys., 10 (2008) 4322. crossref(new window)

12.
A. Pakdel, C. Zhi, Y. Bando, T. Nakayama, and D. Goldberg, ACS Nano, 5 (2011) 6507. crossref(new window)

13.
X. Yang, J. Zhuang, X. Li, D. Chen, G. Ouyang, Z. Mao, Y. Han, Z. He, C. Liang, M. Wu, and J. C. Yu, ACS Nano, 3 (2009) 1212. crossref(new window)

14.
M. J. Lee, N. Y. Lee, J. R. Lim, J. B. Kim, M. Kim, H. K. Baik, and Y. S. Kim, Adv. Mater., 18 (2006) 3115. crossref(new window)

15.
M. T. Khorasani and H. Mirzadeh, J. Appl. Polym. Sci., 91 (2004) 2042. crossref(new window)

16.
M. Jin, X. Feng, J. Xi, J. Zhai, K. Cho, L. Feng, and L. Jiang, Macromol Rapid Commun., 26 (2005) 1805. crossref(new window)

17.
K. Tadanaga, J. Morinaga, A. Matsuda, and T. Minami, Chem. Mater., 12 (2000) 590. crossref(new window)

18.
D. Oner and T. J. McCarthy, Langmuir, 16 (2000) 7777. crossref(new window)

19.
D. Hong, I. Ryu, H. Kwon, J-J. Lee, and S. Yim, Phys. Chem. Chem. Phys., 15 (2013) 11862. crossref(new window)

20.
S. M. M. Ramosa, E. Charlaixa, and A. Benyagoub, Surf. Sci., 540 (2003) 355. crossref(new window)

21.
J. Park, Y. S. Kim, and P. Hammond, Nano Lett., 5 (2005) 1347. crossref(new window)

22.
T. W. Odom, V. R. Thalladi, J. C. Love, and G. M. Whitesides, J. Am. Chem. Soc., 124 (2002) 12112. crossref(new window)

23.
K. Lee, S. Lyu, S. Lee, Y. S. Kim, and W. Hwang, Appl. Surf. Sci., 256 (2010) 6729. crossref(new window)

24.
J. Han and W. Gao, J. Electron. Mater., 38 (2009) 601. crossref(new window)

25.
J. Kim, M. Kim, M. J. Lee, J. S. Lee, K. Shin, and Y. S. Kim, Adv. Mater., 21 (2009) 4050. crossref(new window)

26.
J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater., 18 (2006) 867. crossref(new window)

27.
Y. Zhang, P. Yang, and L. Zhang, J. Nanopart. Res., 15 (2013) 1329. crossref(new window)

28.
M. Cao, C. Li, B. Zhang, J. Huang, L. Wang, and Y. Shen, J. Alloys Comp., 622 (2015) 695. crossref(new window)

29.
Y-J. Song, M. Wang, X-Y. Zhang, J-Y. Wu, and T. Zhang, Nanoscale Res. Lett., 9 (2014) 17. crossref(new window)

30.
R. N. Wenzel, Ind. Eng. Chem., 28 (1936) 988. crossref(new window)

31.
A. B. D. Cassie and S. Baxter, Trans. Faraday Soc., 40 (1944) 546. crossref(new window)

32.
Z. Yoshimitsu, A. Nakajima, T. Watanabe, and K. Hashimoto, Langmuir, 18 (2002) 5818. crossref(new window)