JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Properties of ZnO:Ga thin films deposited by RF magnetron sputtering under various RF power
Kim, Deok Kyu; Kim, Hong Bae;
  PDF(new window)
 Abstract
ZnO:Ga thin films were deposited by RF magnetron sputtering technique from ZnO (3 wt.% ) target onto glass substrates under various RF power. The influence of RF power on the structural, electrical, and optical properties of ZnO:Ga thin films was investigated by X-ray diffraction, atomic force microscopy, Hall method and optical transmission spectroscopy. As the RF power increases from 50 to 110W, the crystallinity is deteriorated, the root main square surface roughness is decreased and the sheet resistance is increased. The increase of sheet resistance is caused by decreasing carrier concentration due to interstitial Ga ion. All films are transparent up to 80% in the visible wavelength range and the adsorption edge is a red-shift with increasing RF power.
 Keywords
ZnO:Ga;RF magnetron sputtering;RF power;interstitial Ga ion;
 Language
English
 Cited by
1.
Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power, Ceramics International, 2016, 42, 15, 17706  crossref(new windwow)
 References
1.
X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett. 83, 7875 (2003).

2.
J. Muller, B. Rech, J. Springer, and M. Vanecek, Sol. Energy 77, 917 (2004). crossref(new window)

3.
T. Minami, S. Takata, and T. Kakumu, J. Vac. Sci. Technol. A 14, 1689 (1996). crossref(new window)

4.
M. Miyazaki, K. Sato, A. Mitsui, H. Nishimura, J. Non-Crystalline Solids 218, 323 (1997). crossref(new window)

5.
R. K. Shukla, A. Srivastava, A. Srivastava, K.C. Dubey, J. Crystal Growth 294, 427 (2006). crossref(new window)

6.
V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa, R. Martins, Thin Solid Films 427, 401 (2003). crossref(new window)

7.
M. S. M. Saifullah, K. R. V. Subramanian, D. J. Kang, D. Anderson, W. T. S. Huck, G. A. C. Jones, and M. E. Welland, Adv. Mater. 17, 1757 (2005). crossref(new window)

8.
C. S. Son, Korean J. Mater. Res. 21, 3 (2011).

9.
J. K. Kim, S. J. Yun, J. M. Lee, J. W. Lim, Curr. Appl. Phys. 10, S451 (2010). crossref(new window)

10.
Y. H. Joung, J. S. Kang, J. Korean Inst. Info. Commu. Eng. 18, 2497 (2014). crossref(new window)

11.
A. Mosbah, and M. S. Aida, J. Alloys Compd. 515, 149 (2012). crossref(new window)

12.
H. Kumarakuru, D. Cherns, and G. M. Fuge, Surf. Coat. Technol. 205, 5083 (2011). crossref(new window)

13.
P. Baneerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys. 108, 043504 (2010). crossref(new window)

14.
Z. Zhang, C. Bao, W. Yao, S. Ma, L. Zhang, and S. Hou, Superlattices Microstruct. 49, 644 (2011). crossref(new window)

15.
W. Yang, Z. Wu, Z. Liu, A. Pang, Y. L. Tu, and Z. C. Feng, Thin Solid Films 519, 31 (2010). crossref(new window)

16.
J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci. 257, 2731 (2011). crossref(new window)

17.
C. Guillen, and J. Herrero, Surf. Coat. Technol. 201, 309 (2006). crossref(new window)

18.
J. H. Oha, K. K. Kim, and T. Y. Seong, Appl. Surf. Sci. 257, 2731 (2011). crossref(new window)

19.
G. Haake, J. Appl. Phys. 47, 4086 (1976). crossref(new window)