Advanced SearchSearch Tips
Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Photoluminescence Characterization of Vertically Coupled Low Density InGaAs Quantum Dots for the application to Quantum Information Processing Devices
Ha, S.-K.; Song, J.D.;
  PDF(new window)
Vertically coupled low density InGaAs quantum dots (QDs) buried in GaAs matrix were grown with migration enhanced molecular beam epitaxy method as a candidate for quantum information processing devices. We performed excitation power-dependent photoluminescence measurements at cryogenic temperature to analyze the effects of vertical coupling according to the variation in thickness of spacer layer. The more intense coupling effects were observed with the thinner spacer layer, which modified emission properties of QDs significantly. The low surface density of QDs was observed by atomic force microscopy, and scanning transmission electron microscopy verified the successful vertical coupling between low density QDs.
Quantum dots;Molecular beam epitaxy;InGaAs;photoluminescence;Quantum information processing;
 Cited by
Analysis of In/Ga Inter-Diffusion Effect on the Thermodynamical Properties of InAs Quantum Dot,;;;;

Applied Science and Convergence Technology, 2016. vol.25. 6, pp.158-161 crossref(new window)
S. Maier, P. Gold, A. Forchel, N. Gregersen, J. Mork, S. Hofling, C. Schneider, and M. Kamp, Opt. Expr. 22, 8136 (2014). crossref(new window)

M. J. Conterio, N. Sköld, D. J. P. Ellis, I. Farrer, D. A. Ritchie, and A. J. Shields, Appl. Phys. Lett. 103, 162108 (2013). crossref(new window)

E. Koroknay, W. M. Schulz, D. Richter, U. Rengstl, M. Reischle, M. Bommer, C. A. Kessler, R. Rossbach, H. Schweizer, and M. Jetter, Phys. Status Solidi B 249, 737 (2012). crossref(new window)

A. Rantamaki, G. S. Sokolovskii, S. A. Blokhin, V. V. Dudelev, K. K. Soboleva, M. A. Bobrov, A. G. Kuzmenkov, A. P. Vasil'ev, A. G. Gladyshev, and N. A. Maleev, Opt. Lett. 40, 3400 (2015). crossref(new window)

R. Oulton, A. I. Tartakovskii, A. Ebbens, J. J. Finley, D. J. Mowbray, M. S. Skolnick, and M. Hopkinson, Physica E 26, 302 (2005). crossref(new window)

M. Scholz, S. B ettner, O. Benson, A. I. Toropov, A. K. Bakarov, A. K. Kalagin, A. Lochmann, E. Stock, O. Schulz, and F. Hopfer, Opt. Expr. 15, 9107 (2007). crossref(new window)

J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gerard, Nature Photon. 4, 174 (2010). crossref(new window)

N. K. Cho, S. P. Ryu, J. D. Song, W. J. Choi, J. I. Lee, and H. Jeon, Appl. Phys. Lett. 88, 133104 (2006). crossref(new window)

J. D. Song, Y. J. Park, I. K. Han, W. J. Choi, W. J. Cho, J. I. Lee, Y. H. Cho, and J. Y. Lee, Physica E 26, 86 (2005). crossref(new window)

S.-P. Ryu, N.-K. Cho, J.-Y. Lim, A.-R. Rim, W.-J. Choi, J.-D. Song, J.-I. Lee, and Y.-T. Lee, Jpn. J. Appl. Phys. 48, 091103 (2009). crossref(new window)

J. S. Wang, S. H. Yu, Y. R. Lin, H. H. Lin, C. S. Yang, T. T. Chen, Y. F. Chen, G. W. Shu, J. L. Shen, and R. S. Hsiao, Nanotechnology 18, 015401 (2007). crossref(new window)

M. A. Migliorato, L. R. Wilson, D. J. Mowbray, M. S. Skolnick, M. Al-Khafaji, A. G. Cullis, and M. Hopkinson, J. Appl. Phys. 90, 6374 (2001). crossref(new window)

G. S. Solomon, J. A. Trezza, A. F. Marshall, and J. S. Harris Jr, Phys. Rev. Lett. 76, 952 (1996). crossref(new window)

J. Rihani, N. B. Sedrine, V. Sallet, M. Oueslati, and R. Chtourou, Appl. Surf. Sci. 254, 3125 (2008). crossref(new window)

M. O. Lipinski, H. Schuler, O. G. Schmidt, K. Eberl, and N. Y. Jin- Phillipp, Appl. Phys. Lett. 77, 1789 (2000). crossref(new window)

Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995). crossref(new window)