JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Investigation of detection wavelength of Quantum Well Infrared-Photodetector
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Investigation of detection wavelength of Quantum Well Infrared-Photodetector
Hwang, S.H.; Lim, J.G.; Song, J.D.; Shin, J.C.; Heo, D.C.; Choi, W.J.;
  PDF(new window)
 Abstract
We report on GaAs/AlGaAs quantum well infrared photodetectors (QWIPs) that can cover the spectral range of . One advantage of the GaAs QWIPs is the wavelength tenability as a function of their structural parameters. We have performed a systematic calculation on the detection wavelength of a typical multi-quantum-well photodetector, with the aluminum mole fraction (x) of barrier in the range of 0.15-0.43 and the quantum-well width range from 30 to 60 . Design and fabrication of a QWIP based on structure with -thick well width has been carried out. The calculated operation wavelength of the QWIP is in a good agreement with the experimental data taken by photo response and activation energy calculation from thermal quenching of integrated photoluminescence.
 Keywords
Quantum well;Infrared;Photodetector;QWIP;
 Language
English
 Cited by
 References
1.
R. L. Whitney, F. W. Adams, and K. F. Cuff, Intersubband Transitions in Quantum Wells (Plenum, New York, 1992) NATO ASI Series, B, p. 288.

2.
M. O. Manasreh, Semiconductor Quantum Wells and Superlattices for Long Wave-length Infrared Detectors (Artech House, Boston, 1993).

3.
E. H. Li, Jpn. J. Appl. Phys. 36, 3418 (1997). crossref(new window)

4.
S. A. Lyon, Preliminary Reports, Memoranda and Technical Notes (Mater. Res. Council Summer Conf, La Jolla, July, 1982) p. 51.

5.
L. C. Chiu, J. S. Smith, S. Margalit, and A. Yariv, Appl. Phys. Lett. 43, 331 (1983). crossref(new window)

6.
L. C. Wesh and S. J. Eglash, Appl. Phys. Lett. 46, 1156 (1985). crossref(new window)

7.
J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, J. Vac. Sci. Technol. B 1, 376 (1983).

8.
B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker, and R. J. Malik, Appl. Phys. Lett. 50, 1092 (1987). crossref(new window)

9.
B. F. Levine, C. G. Bethea, K. K. Choi, J. Walker, and R. J. Malik, J. Appl. Phys. 64, 1591 (1988). crossref(new window)

10.
B. F. Levine, C. G. Bethea, G. Hansnain, J. Walker, and R. J. Malik, Appl. Phys. Lett. 53, 296 (1988). crossref(new window)

11.
G. Hansnain, B. F. Levine, C. G. Bethea, R. F. Logan, J. Walker, and R. J. Malik, Appl. Phys. Lett. 54, 2515 (1989). crossref(new window)

12.
C. G. Bethea, B. F. Levine, G. Hansnain, J. Walker, and R. J. Malik, J. Appl. Phys. 66 July 15 (1989).

13.
D. D. Coon and R. P. G. karunasiri, Appl. Phys. Lett. 45, 649 (1984) crossref(new window)

14.
D. D. Coon, R. P. G. karunasiri, and H. C. Liu, J. Appl. Phys. 60, 2636 (1986). crossref(new window)

15.
K. K. Choi, J. Appl. Phys. 73, 5230 (1993). crossref(new window)

16.
G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis, France, 1998).

17.
Y. Gusakov, E. Finkman, G. Bahir, and D. Ritter, Appl. Phys. Lett. 79, 2508 (2001). crossref(new window)

18.
W. J. Bartels, J. Hornstra, and D. J. W. Lobeek, Acta Crystalloge, A 42, 539 (1986). crossref(new window)

19.
J. D. Lambkin, D. J. Dunstan, K. P. Homewood, L. K. Howard, and M. T. Emery, Appl. Phys. Lett. 57, 1986 (1990). crossref(new window)

20.
M. Vening, D. J. Dunstan, and K. P. Homewood, Phys. Rev. B 48 (1993) 2412. crossref(new window)

21.
S. -K. Park, Y. J. Park, E. K. Kim, C. J. Park, H. Y. Cho, Y. S. Lim, J. Y. Lee, and C. Lee, Jpn. J. Appl. Phys. 41 (2002) 4378. crossref(new window)

22.
F. E. Wiliams and H. J. Erying, J. Chem. Phys. 15, 289 (1947). crossref(new window)

23.
D. Bimberg and M. Sondergeld, Phyica. Rev. B 4, 3451 (1971). crossref(new window)

24.
E. Pelve, F. Beltram, C. G. Bethea, B. F. Levine, V. O. Shen, S. J. Hsieh, and R. R. Abbott, J. Appl. Phys. 86, 5656 (1989).

25.
M. Matsuura and T. Kamizato, Phys. Rev. B 33, 8385-8389 (1986). crossref(new window)