Advanced SearchSearch Tips
Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Chemical Vapor Deposition Using Ethylene Gas toward Low Temperature Growth of Single-Walled Carbon Nanotubes
Jo, Sung-Il; Jeong, Goo-Hwan;
  PDF(new window)
We demonstrate the growth of single-walled carbon nanotubes (SWNTs) using ethylene-based chemical vapor deposition (CVD) and ferritin-induced catalytic particles toward growth temperature reduction. We first optimized the gas composition of and at 500 and 30 sccm, respectively. On a planar substrate, high density SWNTs were grown at a minimum temperature of . In the case of growth using nanoporous templates, many suspended SWNTs were also observed from the samples grown at ; low values of in the Raman spectra were also obtained. This means that the temperature of is sufficient for SWNT growth in ethylene-based CVD and that ethylene is more effective that methane for low temperature growth. Our results provide a recipe for low temperature growth of SWNT; such growth is crucial for SWNT-based applications.
Ethylene;Chemical vapor deposition;Single-walled carbon nanotube;Low-temperature growth;Zeolite;
 Cited by
S. Iijima and T. Ichihashi, Nature 363, 603 (1993). crossref(new window)

S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997). crossref(new window)

M. F. L. D. Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science 339, 535 (2013). crossref(new window)

M. M. Shulaker, G. Hills, N. Patil, H. Wei, H. Y. Chen, H. S. P. Wong, and S. Mitra, Nature 501, 526 (2013). crossref(new window)

H. Wang, L. Wei, F. Ren, Q. Wang, L. D. Pfefferle, G. L. Haller, and Y. Chen, ACS Nano 7, 614 (2013). crossref(new window)

F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo, Z. Xu, J. Wei, J. Q. Wang, Z. Xu, F. Peng, X. Li, R. Li, Y. Li, M. Li, X. Bai, F. Ding, and Y. Li, Nature 510, 522 (2014). crossref(new window)

S. Zhang, L. Tong, Y. Hu, L. Kang, and J. Zhang, J. Am. Chem. Soc. 137, 8904 (2015). crossref(new window)

Y. Li, W. Kim, Y. Zhang, M. Rolandi, D. Wang, and H. Dai, J. Phys. Chem. B 105, 11424 (2001). crossref(new window)

G. H. Jeong, A. Yamazaki, S. Suzuki, H. Yoshimura, Y. Kobayashi, and Y. Homma, J. Am. Chem. Soc. 127, 8238 (2005). crossref(new window)

G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, J. Appl. Phys. 98, 124311 (2005). crossref(new window)

G. H. Jeong, A. Yamazaki, S. Suzuki, Y. Kobayashi, and Y. Homma, Chem. Phys. Lett. 422, 83 (2006). crossref(new window)

G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura, and Y. Homma, Appl. Phys. Lett. 90, 043108 (2007). crossref(new window)

J. J. Kim, B. J. Lee, S. H. Lee, and G. H. Jeong, Nanotechnology 23, 105607 (2012). crossref(new window)

D. Takagi, Y. Homma, H, Hibino, S. Suzuki, and Y. Kobayashi, Nano Lett. 6, 2642 (2006). crossref(new window)

S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, J. Am. Chem. Soc. 129, 1516 (2007). crossref(new window)

Z. Ghorannevis, T. Kato, T. Kaneko, and R. Hatakeyama, J. Am. Chem. Soc. 132, 9570 (2010). crossref(new window)

S. H. Lee and G. H. Jeong, Electron Mater. Lett. 8, 5 (2012). crossref(new window)

K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A. A. Lucas, Zeolites 17, 416 (1996). crossref(new window)

T. Kato, G. H. Jeong, T. Hirata, R. Hatakeyama, K. Tohji, and K. Motomiya, Chem. Phys. Lett. 381, 422 (2003). crossref(new window)

T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto, T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, and H. Shinohara, Chem. Phys. Lett. 382, 679 (2003). crossref(new window)

T. Moteki, Y. Murakami, S. Noda, S. Maruyama, and T. Okubo, J. Phys. Chem. C 115, 24231 (2011). crossref(new window)

S. Lim, D. Ciuparu, C. Pak, F. Dobek, Y. Chen, D. Harding, L. Pfefferle, and G. Haller, J. Phys. Chem. B 107, 11048 (2003). crossref(new window)

P. B. Amama, S. Lim, D. Ciuparu, Y. Yang, L. Pfefferle, and G. L. Haller, J. Phys. Chem. B 109, 2645 (2005). crossref(new window)

P. Ramesh, T. Okazaki, R. Taniguchi, J. Kimura, T. Sugai, K. Sato, Y. Ozeki, and H. Shinohara, J. Phys. Chem. B 109, 1141 (2005). crossref(new window)

M. He, H. Jiang, B. Liu, P. V. Fedotov, A. I. Chernov, E. D. Obraztsova, F. Cavalca, J. B. Wagner, T. W. Hansen, I. V. Anoshkin, E. A. Obraztsova, A. V. Belkin, E. Sairanen, A. G. Nasibulin, J. Lehtonen, and E. I. Kauppinen, Scientific Report 3, 1460 (2013).

E. H. Kwak, K. B. Yoon, and G. H. Jeong, Curr. Appl. Phys. 14, 1633 (2014). crossref(new window)

J. K. Park, Y. H. Ahn, J. Y. Park, S. Lee, and K. H. Park, Nanotechnology 21, 115706 (2010). crossref(new window)

Y. Homma, S. Suzuki, Y. Kobayashi, M. Nagase, and D. Takagi, Appl. Phys. Lett. 84, 1750 (2004). crossref(new window)

A. Jorio, R. Satio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001). crossref(new window)

]J. C. Meyer, M. Paillet, T. Michel, A. Moreac, A. Neumann, G. S. Duesberg, S. Roth, and J. L. Sauvajol, Phys. Rev. Lett. 95, 217401 (2005). crossref(new window)