Advanced SearchSearch Tips
Toward Charge Neutralization of CVD Graphene
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Toward Charge Neutralization of CVD Graphene
Kim, Soo Min; Kim, Ki Kang;
  PDF(new window)
We report the systematic study to reduce extrinsic doping in graphene grown by chemical vapor deposition (CVD). To investigate the effect of crystallinity of graphene on the extent of the extrinsic doping, graphene samples with different levels of crystal quality: poly-crystalline and single-crystalline graphene (PCG and SCG), are employed. The graphene suspended in air is almost undoped regardless of its crystallinity, whereas graphene placed on an substrate is spontaneously p-doped. The extent of p-doping from the substrate in SCG is slightly lower than that in PCG, implying that the defects in graphene play roles in charge transfer. However, after annealing treatment, both PCG and SCG are heavily p-doped due to increased interaction with the underlying substrate. Extrinsic doping dramatically decreases after annealing treatment when PCG and SCG are placed on the top of hexagonal boron nitride (h-BN) substrate, confirming that h-BN is the ideal substrate for reducing extrinsic doping in CVD graphene.
graphene;doping;chemical vapor deposition;single crystalline;hexagonal boron nitride;
 Cited by
Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition,;;;;;;;;

Current Applied Physics, 2016. vol.16. 9, pp.1229-1235 crossref(new window)
Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition, Current Applied Physics, 2016, 16, 9, 1229  crossref(new windwow)
K. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, et al., Nature 438 197 (2005). crossref(new window)

A. K. Geim and K. S. Novoselov Nat. Mater. 6 183 (2007). crossref(new window)

C. Dean, A. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, et al. Nature Nanotech. 5 722 (2010). crossref(new window)

C. Lee, X. Wei, J. W. Kysar, and J. Hone Science, 321 385 (2008). crossref(new window)

S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, et al. Nat. Nanotech. 5 574 (2010). crossref(new window)

J. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P. Campbell, et al. Electron Device Letters, IEEE 30 650 (2009). crossref(new window)

S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton, and J. Golovchenko Nature 467 190 (2010). crossref(new window)

S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias, J. Jaszczak, et al. Phys. Rev. Lett. 100 016602 (2008). crossref(new window)

J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer Nature Nanotech. 3 206 (2008). crossref(new window)

M. Lafkioti, B. Krauss, T. Lohmann, U. Zschieschang, H. Klauk, K. v. Klitzing, et al., Nano Lett. 10 1149 (2010). crossref(new window)

W. H. Lee, J. W. Suk, J. Lee, Y. Hao, J. Park, J. W. Yang, et al. ACS Nano 6 1284 (2012). crossref(new window)

K. Novoselov, D. Jiang, F. Schedin, T. Booth, V. Khotkevich, S. Morozov, et al. Proc. Natl. Acad. Sci. USA 102 10451 (2005). crossref(new window)

X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al. Science 324 1312 (2009). crossref(new window)

X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, et al. J. Am. Chem. Soc. 133 2816 (2011). crossref(new window)

Y.-C. Lin, C.-C. Lu, C.-H. Yeh, C. Jin, K. Suenaga, and P.-W. Chiu Nano Lett. 12 414 (2011).

J. Chan, A. Venugopal, A. Pirkle, S. McDonnell, D. Hinojos, C. W. Magnuson, et al. ACS Nano 6 3224 (2012). crossref(new window)

Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L. Paulus, C.-J. Shih, et al. Nat. Chem, 4 724 (2012). crossref(new window)

L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus Phys. Rep. 473 51 (2009). crossref(new window)

A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S. Saha, U. Waghmare, et al. Nat. Nanotech. 3 210 (2008). crossref(new window)

A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, C. Magnuson, S. McDonnell, et al. Appl. Phys. Lett. 99 122108 (2011). crossref(new window)

Z. Cheng, Q. Zhou, C. Wang, Q. Li, C. Wang, and Y. Fang Nano Lett. 11 767 (2011). crossref(new window)