Advanced SearchSearch Tips
Secondary Electron Emission of ZnO Films
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Secondary Electron Emission of ZnO Films
Choi, Jinsung; Lee, Sung Kwang; Choi, Joon Ho; Choi, Eun Ha; Jung, Ranju; Kim, Yunki;
  PDF(new window)
We investigated secondary electron emission characteristics of ZnO thin films prepared by pulsed laser deposition method with respect to the ambient oxygen pressure and the substrate temperature during the deposition. X-ray diffraction, UV-Vis spectrometry, atomic force microscopy, and -FIB were used to examine the structural, optical transmission, surface morphology, and secondary electron emission properties of the films, respectively. The secondary electron emission coefficient of the ZnO films increases as the O/Zn ratio of the films increases which was thought to result from either the ambient oxygen pressure increase or the substrate temperature decrease and as the grain size of the films decreases. It was confirmed that ZnO has better secondary electron emission characteristics than those of MgO, which is currently widely used as a material for PDP protecting layers.
ZnO;Secondary electron emission;PLD;-FIB;
 Cited by
Enhancement in optical characteristics of c-axis-oriented radio frequency–sputtered ZnO thin films through growth ambient and annealing temperature optimization, Materials Science in Semiconductor Processing, 2017, 66, 1  crossref(new windwow)
M. O. Aboelfotoh, IEEE Trans. Electron Devices ED-29(2) 247 (1982).

Tsutae Shinoda, Heiju Uchiike, and Shizuo Andoh, IEEE Trans. Electron Devices ED-26(8) 1163 (1979).

Suk Joo Bae, Seong-Joon Kim, Man Soo Kim, Bae Jin Lee, and Chang Wook Kang, IEEE Trans. Reliability 57(2) 222 (2008). crossref(new window)

Sang Jik Kwon, Yong Jae Kim, and Seong Eui Lee, Jpn. J. Appl. Phys. Vol. 45(11) 8709 (2006). crossref(new window)

Jae Hwan Eun, Jung Heon Lee, Soo Gil Kim, Myung Yoon Um, Sun Young Park, and Hyeong Joon Kim Thin Solid Films 435 199 (2003). crossref(new window)

H. Uchiike, K. Sekiya, T. Hashimoto, T. Shinoda, and Y. Fukushima, IEEE Trans. Electron Devices ED-30, 1735 (1983).

S.H. Yoon, J.S. Kim, and Y.S. Kim, Curr. Appl. Phys. 6S1, e154 (2006).

E. M. Kaidashev, M. Lorenz, H. von Wenckstern, A. Rahm, H.-C. Semmelhack, K.-H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth, and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003). crossref(new window)

J. L. Zhao, X. M. Li, J. M. Bian, W. D. Yu, and X. D. Gao, J. Cryst. Growth 276, 507 (2005). crossref(new window)

Y. Lim, J. S. Oh, B. D. Ko, J. W. Cho, S. O. Kang, G. Cho, H. S. Uhm, and E. H. Choi, J. Appl. Phys. 94, 764 (2003). crossref(new window)

O. Dulub, L. A. Boatner, and U. Dedbold, Surf. Sci. 519, 201 (2002). crossref(new window)

E. S. Jung, J. Y. Lee, H. S. Kim, and N. W. Jang, J. Korean Phys.Soc. 47, S480 (2005).

S. S. Shariffudin, M. Salina, and S. H. Herman, and M. Rusop, Trans. Electr. Electron. Mater. 13(2) 102 (2012). crossref(new window)

Jin-Cherng Hsu, Yung-Hsin Lin, Paul W. Wang, and Yu-Yun Chen, Appl. Opt. 51(9) 1209 (2012). crossref(new window)

K. J. Lethy, D. Beena, R. Vinodkumar, V. P. Mahadevan Pillai, V. Ganesan, V. Sathe, and D. M. Phase, Appl. Phys. A 91, 637 (2008). crossref(new window)

N. Croitoru, A. Seidman, and K. Yassin, Appl. Phys. 57, 102 (1985). crossref(new window)

N. Croitoru, A. Seidman, and K. Yassin, Phys. Scripta. 37, 555 (1988). crossref(new window)

L. M. Kishinevsky, Radiat. Eff. 19, 23 (1973). crossref(new window)