JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Electrical Bistable Characteristics of Organic Charge Transfer Complex for Memory Device Applications
Lee, Chang-Lyoul;
  PDF(new window)
 Abstract
In this work, the electrical bistability of an organic CT complex is demonstrated and the possible switching mechanism is proposed. 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and tetracyanoquinodimethane (TCNQ) are used as an organic donor and acceptor, respectively, and poly-methamethylacrylate (PMMA) is used as a polymeric matrix for spin-coating. A device with the Al/()/PMMA:BCP:TCNQ[1:1:0.5 wt%]/Al configuration demonstrated bistable and switching characteristics similar to Ovshinsky switching with a low threshold voltage and a high ON/OFF ratio. An analysis of the current-voltage curves of the device suggested that electrical switching took place due to the charge transfer mechanism.
 Keywords
Organic memory;Charge transfer complex;Electrical switching;Bistability;Retention;Filament;
 Language
English
 Cited by
 References
1.
J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature 347, 539 (1990). crossref(new window)

2.
T.-H. Han, Y. Lee, M.-R. Choi, S.-H. Woo, S.-H. Bae, B. H. Hong, J.-H. Ahn, and T.-W. Lee, Nat. Photonics 6, 105 (2012). crossref(new window)

3.
H. Sirringhaus, N. Tessler, and R. H. Friend, Science 280, 1741 (1998). crossref(new window)

4.
Y. Yuan, G. Giri, A. L. Ayzner, A. P. Zoombelt, S. C. B. Mannsfeld, J. Chen, D. Nordlund, M. F. Toney, J. Huang, and Z. Bao, Nat. Commun. 5, 3005 (2014). crossref(new window)

5.
G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995). crossref(new window)

6.
Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan, Nat. Mater. Nat. Commun. 5, 5293 (2014).

7.
N. Tessler, G. J. Denton, and R. H. Friend, Nature 382, 695 (1996). crossref(new window)

8.
A. Szymanski1, D. C. Larson, and M. M. Labes, Appl. Phys. Lett. 14, 88 (1969). crossref(new window)

9.
H. Carchano, R. Lacoste, and Y. Segui, Appl. Phys. Lett. 19, 414 (1971). crossref(new window)

10.
H. K. Henisch and W. R. Smith, Appl. Phys. Lett. 24, 589 (1974). crossref(new window)

11.
A. R. Elsharkawi and K. C. Kao, J. Phys. Chem. Solids. 38, 95. (1977). crossref(new window)

12.
S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968). crossref(new window)

13.
D. Ma, M. Aguiar, J. A. Freire, and I. A. Hummelgen, Adv. Mater. 12, 1063 (2000). crossref(new window)

14.
D. Tondelier, K. Lmimouni, D. Vuillaume C. Fery, and G. Haas, Appl. Phys. Lett. 85, 5763 (2004). crossref(new window)

15.
W. Tang, H. Shi, G. Xu, B. S. Ong, Z. D. Popovic, J. Deng, J. Zhao, and G. Rao, Adv. Mater. 17, 2307 (2005). crossref(new window)

16.
T. Tsujoka and H. Kondo, Appl. Phys. Lett. 83, 937 (2003). crossref(new window)

17.
A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 82, 1215 (2003). crossref(new window)

18.
A. Bandyopadhyay and A. J. Pal, Appl. Phys. Lett. 84, 999 (2004). crossref(new window)

19.
L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002). crossref(new window)

20.
L. P. Ma, S. M. Pyo, J. Ouyang, Q. F. Xu, and Y. Yang, Appl. Phys. Lett. 82, 1419 (2003). crossref(new window)

21.
J. Wu, L. P. Ma, and Y. Yang, Phys. Rev. B 69, 115321 (2004). crossref(new window)

22.
L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004). crossref(new window)

23.
R. S. Potember, T. O. Poehler, and D. O. Cowon, Appl. Phys. Lett. 34, 405 (1979). crossref(new window)

24.
Q. Zhang, W. Wang, G. Ye, X. Yan, Z. Zhnag, and Z. Hua, Synth. Met. 144, 285 (2004). crossref(new window)

25.
X.-L. Mo, G.-R. Chen, Q.-J. Cai, Z.-Y. Fan, H.-H. Xu, Y. Ya, J. Yang, H.-H. Gu, and Z.-Y. Hua, Thin Solid Films 436, 259 (2003). crossref(new window)

26.
J. Li, Z. Xue, W. M. Liu, S. Hou, X. Li, and X. Zhao, Phys. Lett. A 266, 441 (2000). crossref(new window)

27.
K. Z. Wang, Z. Q. Xue, M. Ouyang, D. W. Wang, H. X. Zhang, and C. H. Huang, Chem. Phys. Lett. 243, 217 (1995). crossref(new window)

28.
T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 83, 1252 (2003). crossref(new window)

29.
J. Y. Ouyang, C.W. Chu, C. R. Szmanda, L. P. Ma and, Y. Yang, Nat. Mater. 3, 918 (2004). crossref(new window)

30.
C. W. Chu, J. Y. Ouyang, J.-H. Tseug, and Y. Yang, Adv. Mater. 17, 1440 (2005). crossref(new window)

31.
R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005). crossref(new window)

32.
B. Milian, R. Pou-Amerigo, R. Viruela and E. Orti, Chem. Phys. Lett. 391, 148 (2004). crossref(new window)

33.
M. S. Matos and M. H. Gehlen, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 60, 1421 (2004). crossref(new window)

34.
R. M. Q. Mello, E. C. Azevedo, A. Meneguzzi, M. Aguiar, L. Akcelrud, and I. A. Hummelgen, Macromol. Mater. Eng. 287, 466 (2002). crossref(new window)

35.
Zhiwen Jin, Guo Liu, and Jizheng Wang, AIP Adv. 3, 052113 (2013). crossref(new window)

36.
A. Prakash, J. Ouyang, J.-L. Lin, and Y. Yang, J. Appl. Phys. 100, 054309 (2006). crossref(new window)

37.
S.-H. Lee, S.-H. Oh, Y. Ji, J. Kim, R. Kang, D. Khim, S. Lee, J.-S. Yeo, N. Lu, M. J. Kim, H. C. Ko, T.-W. Kim, Y.-Y. Noh, and D.-Y. Kim, Org. Electron. 15, 1290 (2014). crossref(new window)