JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Highly Efficient Encapsulation of Anionic Small Molecules in Asymmetric Liposome Particles
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Highly Efficient Encapsulation of Anionic Small Molecules in Asymmetric Liposome Particles
Lee, Myung Kyu;
  PDF(new window)
 Abstract
Anionic small molecules are hard to penetrate the cell membranes because of their negative charges. Encapsulation of small molecules into liposome particles can provide target specific delivery of them. In our previous study, siRNA could be efficiently encapsulated into liposome particles using an asymmetric preparation method of liposomes. In this study, the same method was applied for encapsulation of small anionic fluorescent chemicals such as calcein and indocyanine green (ICG). More than 90% fluorescent chemicals were encapsulated in the asymmetric liposome particles (ALPs). No intracellular fluorescent signal was observed in the tumor cells treated with the unmodified calcein/ALPs and ICG/ALPs, whereas the surface modification with a cell-penetrating polyarginine peptide (R8 or R12) allows cellular uptake of the ALPs. The results demonstrate that the ALPs encapsulating small anionic drugs will be useful for target-specific delivery after modification of target-specific ligands.
 Keywords
Asymmetric liposome particle;Encapsulation of anionic small molecules;Target specific drug delivery;
 Language
English
 Cited by
 References
1.
X. Xu, M. A. Khan and D. J. Burgess, Int. J. Pharmceut. 423, 543 (2012). crossref(new window)

2.
T. M. Allen and P. R. Cullis, Adv. Drug. Deliv. Rev. 65, 36 (2013). crossref(new window)

3.
J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, and J. Savolainen, Nature Rev. Drug Discov. 7, 255 (2008). crossref(new window)

4.
G. J. Charrois and T. M. Allen, Biochim. Biophys. Acta 1663, 167 (2004). crossref(new window)

5.
H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, T, J. Control. Release 65, 271 (2000). crossref(new window)

6.
Y. Barenholz, J. Control. Release 160, 117 (2012). crossref(new window)

7.
J. O. Eloy, M. Claro de Souza, R. Petrilli, J. P. Barcellos, R. J. Lee, and J. M. Marchetti, Colloids Surf. B Biointerfaces 123, 345 (2014). crossref(new window)

8.
F. Szoka, Jr. and D. Papahadjopoulos, Proc. Nat. Acad. Sci. USA 75 4194 (1978). crossref(new window)

9.
R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, J. Microencapsul. 16, 251 (1999). crossref(new window)

10.
L. D. Mayer, M. J. Hope, P. R. Cullis, and A. S. Janoff, Biochim. Biophys. Acta 817, 193 (1985). crossref(new window)

11.
A. A. Mokhtarieh, S. Cheong, S. Kim, B. H. Chung, and M. K. Lee, Biochim. Biophys. Acta 1818, 1633 (2012). crossref(new window)

12.
B. Yuan, N. Chen and Q. Zhu, J. Biomed. Opt. 9, 497 (2004). crossref(new window)

13.
J. Gao, W. Liu, Y. Xia, W. Li, J. Sun, H. Chen, B. Li, D. Zhang, W. Qian, Y. Meng, L. Deng, H. Wang, J. Chen, and Y. Guo, Biomaterials 32, 3459 (2011). crossref(new window)

14.
C. Zhang, N. Tang, X. Liu, W. Liang, W. Xu, and V. P. Torchilin, J. Control. Release 112, 229 (2006). crossref(new window)

15.
S. M. Fuchs and R. T. Raines, Biochemistry 43, 2438 (2004). crossref(new window)