Advanced SearchSearch Tips
White Light Emission with Quantum Dots: A Review
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
White Light Emission with Quantum Dots: A Review
Kim, Nam Hun; Jeong, Jaehak; Chae, Heeyeop;
  PDF(new window)
Quantum dots (QDs) are considered as excellent color conversion and self-emitting materials for display and lighting applications. In this article, various technologies which can be used to realize white light emission with QDs are discussed. QDs have good color purity with a narrow emission spectrum and tunable optical properties with size control capabilities. For white light emission with a color-conversion approach, QDs are combined with blue-emitting inorganic and organic light-emitting diodes (LED) to generate white emission with high energy conversion efficiency and a high color rendering index for various display and lighting applications. Various device structures for self-emitting white QD light-emitting diodes (QD-LED) are also reviewed. Various stacking and patterning technologies are discussed in relation to QD-LED devices.
White light emitting diode;Quantum dots;Photoluminescence;Electroluminescence;
 Cited by
S. Pimputkar, J.S. Speck, S.P. DenBaars, and S. Nakamura, Nat. Photonics 3, 180 (2009). crossref(new window)

Z. Yang, X. Li, Y. Yang, X. Li, and J. Lumin. 707, 122-123 (2007).

N. C. George, K.A. Denault, and R. Seshadri, Annu. Rev. Mater. Res. 43, 481 (2013). crossref(new window)

K. Marrin, LEDs Magazine 10, 41 (2013).

U. Resch-Genger, M. Grabolle, S. Cavaliere-Jaricot, R. Nitschke, and T. Nann, Nat. Methods 5, 763 (2008). crossref(new window)

V. Wood and V. Bulovic, Nano Rev. 1, 5202 (2010).

S. Kim, S. H. Im, and S. W. Kim, Nanoscale 5, 5205 (2013). crossref(new window)

C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993). crossref(new window)

J. Lee, V. C. Sundar, J. R. Heine, M. G. Bawendi, and K. F. Jensen, Adv. Mater. 12, 1311 (2000).

E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, and Y. Kim, Adv. Mater. 22, 3076 (2010). crossref(new window)

S. Nizamoglu, E. Mutlugun, T. Ozel, H.V. Demir, S. Sapra, and N. Gaponik, A. Eychmuller, Appl. Phys. Lett. 92, 113110 (2008). crossref(new window)

W.-S. Song, and H. Yang, Chem. Mater. 24, 1961 (2012). crossref(new window)

D.-Y. Jo, H. Yang, and J. Lumin. 166, 227 (2015). crossref(new window)

S. Jun, J. Lee, and E. Jang, ACS Nano 7, 1472 (2013). crossref(new window)

J.-H. Jo, J.-H. Kim, S.-H. Lee, H. S. Jang, D. S. Jang, J. C. Lee, K. U. Park, Y. Choi, C. Ha, and H. Yang, J. Alloys Compd. 647, 6 (2015). crossref(new window)

P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, and V. Buloviae, Nano Lett. 7, 2196 (2007). crossref(new window)

A. Rizzo, M. Mazzeo, M. Biasiucci, R. Cingolani, and G. Gigli, Small 4, 2143 (2008). crossref(new window)

J. S. Steckel, P. Snee, S. Coe-Sullivan, J. P. Zimmer, J.E. Halpert, P. Anikeeva, L. A. Kim, V. Bulovic, and M. G. Bawendi, Angewandte Chemie International Edition 45, 5796 (2006). crossref(new window)

S. Coe-Sullivan, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Ph.D. (2005).

W. K. Bae, J. Lim, D. Lee, M. Park, H. Lee, J. Kwak, K. Char, C. Lee, and S. Lee, Adv. Mater. 26, 6387 (2014). crossref(new window)

C.-Y.H. Ki-Heon Lee, Hee-Don Kang, Heejoo Ko, Changho Lee, Jonghyuk Lee, NoSoung Myoung, Sang-Youp Yim, and Heesun Yang, ACS Nano, 10.1021/acsnano.5b05513 (2015).

T. H. Kim, D. Y. Chung, J. Ku, I. Song, S. Sul, D. H. Kim, K.S. Cho, B. L. Choi, J. Min Kim, S. Hwang, and K. Kim, Nat. Commun. 4, 2637 (2013).

X. Feng, M. A. Meitl, A. M. Bowen, Y. Huang, R. G. Nuzzo, and J. A. Rogers, Langmuir 23, 12555 (2007). crossref(new window)

M. A. Meitl, Z.-T. Zhu, V. Kumar, K.J. Lee, X. Feng, Y.Y. Huang, I. Adesida, R.G. Nuzzo, and J. A. Rogers, Nat. Mater. 5, 33 (2005).

J. H. Kim, K. H. Lee, H. D. Kang, B. Park, J. Y. Hwang, H. S. Jang, Y. R. Do, and H. Yang, Nanoscale 7, 5363 (2015). crossref(new window)

L. Li, A. Pandey, D. J. Werder, B.P. Khanal, J. M. Pietryga, and V. I. Klimov, J. Am. Chem. Soc. 133, 1176 (2011). crossref(new window)

B. Chen, H. Zhong, M. Wang, R. Liu, and B. Zou, Nanoscale 5, 3514 (2013). crossref(new window)

P. H. Chuang, C. C. Lin, and R. S. Liu, ACS Appl. Mater. Interfaces 6, 15379 (2014). crossref(new window)

T.-H. Kim, K.-S. Cho, E.K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J.-Y. Kwon, G. Amaratunga, S. Y. Lee, B.L. Choi, Y. Kuk, J. M. Kim, and K. Kim, Nat. Photonics 5, 176 (2011). crossref(new window)

K. Yu and Y. Han, Soft Matter 2, 705 (2006). crossref(new window)

W. Cheng, N. Park, M.T. Walter, M.R. Hartman, and D. Luo, Nat. Nanotechnol. 3, 682 (2008). crossref(new window)

A. C. Arango, D. C. Oertel, Y. F. Xu, M. G. Bawendi, and V. Bulovic, Nano Lett. 9, 860 (2009). crossref(new window)

K. J. Hsia, Y. Huang, E. Menard, J. U. Park, W. Zhou, J. Rogers, and J. M. Fulton, Appl. Phys. Lett. 86, 154106 (2005). crossref(new window)

M. K. Choi, J. Yang, K. Kang, D. C. Kim, C. Choi, C. Park, S. J. Kim, S. I. Chae, T. H. Kim, J. H. Kim, T. Hyeon, and D. H. Kim, Nat. Commun. 6, 7149 (2015). crossref(new window)

R. H. Kim, D. H. Kim, J. L. Xiao, B. H. Kim, S. I. Park, B. Panilaitis, R. Ghaffari, J. M. Yao, M. Li, Z. J. Liu, V. Malyarchuk, D. G. Kim, A. P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. G. Huang, Z. Kang, and J. A. Rogers, Nat. Mater. 9, 929 (2010). crossref(new window)

M. S. White, M. Kaltenbrunner, E. D. Glowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, and N. S. Sariciftci, Nat. Photonics 7, 811 (2013). crossref(new window)

T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, and T. Someya, Nat. Mater. 8, 494 (2009). crossref(new window)

C. Wang, D. Hwang, Z. B. Yu, K. Takei, J. Park, T. Chen, B. W. Ma, and A. Javey, Nat. Mater. 12, 899 (2013). crossref(new window)

N. Kim, J. Lee, H. An, C. Pang, S.M. Cho, and H. Chae, J. Mater. Chem. C 2, 9800 (2014). crossref(new window)