Advanced SearchSearch Tips
Plasma Corrosion in Oxalic Acid Anodized Coatings Depending on Tartaric Acid Content
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Plasma Corrosion in Oxalic Acid Anodized Coatings Depending on Tartaric Acid Content
Shin, Jae-Soo; Song, Je-Boem; Choi, Sin-Ho; Kim, Jin-Tae; Oh, Seong-Geun; Yun, Ju-Young;
  PDF(new window)
Study investigated the optimal anodizing conditions for fabricating an oxide film that produces less contamination in a corrosive plasma environment, using oxalic acid and tartaric acid. Oxide films were produced using sulfuric acid, oxalic acid, and tartaric acid electrolyte mixtures with various mole ratios. The oxide film made by adding 0.05M tartaric acid to 0.3M oxalic acid showed higher breakdown voltage and lower leakage current. Additionally, contamination particles were reduced during plasma etching, thus demonstrates that this mixture presented optimal conditions. However, higher tartaric acid content (0.1 M, 0.15 M) led to lower breakdown voltages and higher leakage currents. Also, it resulted in more cracking during thermal shock tests as well as the generation of more contamination particles during plasma processing.
plasma corrosion;etching;particle monitoring;anodizing;anodic film;tartaric acid;
 Cited by
Effect of the layer of anodized 7075-T6 aluminium corrosion properties, Journal of Physics: Conference Series, 2017, 786, 012032  crossref(new windwow)
A. Bautista, J. A. Gonzalez, and V. Lopez, Surf. Coat. Technol. 154, 49 (2002). crossref(new window)

W. Bensalah, K. Elleuch, M. Feki, M. Wery, and H. F. Ayedi, Surf. Coat. Technol. 201, 7855 (2007). crossref(new window)

H. H. Shih, and S. L. Tzou, Surf. Coat. Technol. 124, 278 (2000). crossref(new window)

L. Domingues, J. C. S. Fernandes, M. D. C. Belo, M. G. S. Ferreira, and L.G. Rosa, Corros. Sci. 45, 149 (2003). crossref(new window)

I. Tsangaraki-Kaplanoglou, S. Theohari, Th. Dimogerontakis, Y. M. Wang, H. H. Kuo, and S. Kia, Surf. Coat. Technol. 200, 2634 (2006). crossref(new window)

I. H. Chang, D.Y. Jung, and J. S. Gook, J. Kor. Inst. Surf. Eng. 45, 5 (2012).

J. B. Song, J. T. Kim, S. G. Oh, J. S. Shin, J. R. Chun, and J. Y. Yun, Sci. Adv. Mater. 7, 127 (2015). crossref(new window)

EU Patent, EP 2055 810A2, (2009).

M. Garcia-Rubio, P. Ocon, M. Curioni, G. E. Thompson, P. Skeldon, A. Lavia, and I. Garcia, Corros. Sci. 52, 2219 (2010). crossref(new window)

M. Garcia-Rubio, M.P. de Lara, P. Ocon, S. Diekhoff, M. Beneke, A. Lavia, and I. Garcia, Electrochim. Acta. 54, 4789 (2009). crossref(new window)

K. M. Takahashi, and J. E. Daugherty, J. Vac. Sci. A 14, 2983 (1996). crossref(new window)

J. Ren, and Y. Zuo, Appl. Surf. Sci. 261, 193 (2012). crossref(new window)

L. Woo, S. Kathrin, S. Martin, P. Eckhard, S. Roland, and G. Ulrich, Nature Nanotech., 3, 234 (2008). crossref(new window)