JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Nanoplasmonics: An Enabling Platform for Integrated Photonics and Biosensing
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Nanoplasmonics: An Enabling Platform for Integrated Photonics and Biosensing
Lee, Jihye; Yeo, Jong-Souk;
  PDF(new window)
 Abstract
Nanoplasmonics is a developing field that offers attractive optical, electrical, and thermal properties for a wide range of potential applications. Based on the compelling characteristics of this field, researchers have shed light on the possibilities of integrated photonics and biosensing platforms using nanoplasmonic principles. Single and unique nanostructures with plasmons can act as individual transducers that convert desired information into measurable and readable signals. In this review, we will discuss nanoplasmonic sensors, especially those in relation to photodetectors for future optical interconnects, and bioinformation sensing platforms based on nanoplasmonics, thus providing a viable approach by which to create sensors corresponding to target applications. In addition, we also discuss scalable fabrication processes for the creation of unconventional nanoplasmonic devices, which will enable next-generation plasmonic devices for wearable, flexible, and biocompatible systems.
 Keywords
Plasmonics;Integrated photonics;Plasmon coupling effect;Biomolecule sensing;
 Language
English
 Cited by
 References
1.
J. G. Webster and H. Eren, Measurement, Instrumentation, and Sensors Handbook: Spatial, Mechanical, Thermal, and Radiation Measurement vol. 1 (CRC press, Florida 2014), pp. I-7-I-9.

2.
J. Fraden, Handbook of modern sensors: physics, designs, and applications (Springer Science & Business Media, San Diego, 2004), pp. 37-119.

3.
X. Chen, Z. Guo, G.-M. Yang, J. Li, M.-Q. Li, J.-H. Liu, and X.-J. Huang, Mater. Today, 13, 28 (2010).

4.
J. Wang, Analyst, 130, 421 (2005). crossref(new window)

5.
I. Obataya, C. Nakamura, S. Han, N. Nakamura, and J. Miyake, Biosens. Bioelectron, 20, 1652 (2005). crossref(new window)

6.
P. F. Davies, J. Vasc. Surg. 13, 729 (1991).

7.
C. J. Murphy, Anal. Chem. 74, 520A (2002).

8.
J. M. Lopez-Higuera, Handbook of optical fibre sensing technology (John Wiley & Sons, Chichester, 2002)

9.
A. Yalcin, K. C. Popat, J. C. Aldridge, T. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, C. Sai, D. Gill, M. Anthes-Washburn, M. S. Unlu, and B. B. Goldberg, IEEE J. Sel. Top. Quantum Electron. 12, 148 (2006). crossref(new window)

10.
L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, and J. T. Hupp, Chem. Rev. 112, 1105 (2011).

11.
S. C. Rashleigh, Opt. Lett. 5, 392 (1980). crossref(new window)

12.
H. Kaplan, Practical applications of infrared thermal sensing and imaging equipment vol. 75 (SPIE press,Washington, 2007) pp. 9-29.

13.
M. R. Leahy-Hoppa, J. Miragliotta, R. Osiander, J. Burnett, Y. Dikmelik, C. McEnnis, and J. B. Spicer, Sensors, 10, 4342-4372 (2010). crossref(new window)

14.
P. Han and X.-C. Zhang, Appl. Phys. Lett. 73, 3049 (1998). crossref(new window)

15.
B. MacCraith, V. Ruddy, C. Potter, B. O'Kelly, and J. McGilp, Electron. Lett. 27, 1247 (1991). crossref(new window)

16.
R. Yotter and D. M. Wilson, IEEE Sens. J. 3, 288 (2003). crossref(new window)

17.
O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, Nat. Nanotechnol. 8, 807 (2013). crossref(new window)

18.
S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Business Media, New York, 2007), pp. 65-80.

19.
H. A. Atwater, Sci. Am. 296, 56 (2007). crossref(new window)

20.
H. Duan, A. I. Fernandez-Domínguez, M. Bosman, S. A. Maier, and J. K. Yang, Nano lett. 12, 1683 (2012). crossref(new window)

21.
M. I. Stockman, Phys. Today, 64, 39 (2011).

22.
G. Baffou and R. Quidant, Chem. Soc. Rev. 43, 3898 (2014). crossref(new window)

23.
A. Dmitriev, Nanoplasmonic sensors (Springer Science & Business Media, New York, 2012) pp. 105-126.

24.
Y. Shen, J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. -K. Zhou, X. Wang, C. Jin, and J. Wang, Nat. Commun. 4, 2381 (2013). crossref(new window)

25.
A. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, and A. V. Zayats, Nat. Mater. 8, 867 (2009). crossref(new window)

26.
T. Chung, S.-Y. Lee, E. Y. Song, H. Chun, and B. Lee, Sensors, 11, 10907 (2011). crossref(new window)

27.
H. Liao, C. L. Nehl, and J. H. Hafner, Nanomedicine, 1, 201 (2006). crossref(new window)

28.
A. J. Gormley, N. Larson, S. Sadekar, R. Robinson, A. Ray, and H. Ghandehari, Nano today, 7, 158 (2012). crossref(new window)

29.
J. R. Cole, N. A. Mirin, M. W. Knight, G. P. Goodrich, and N. J. Halas, J. Phys. Chem. C, 113, 12090 (2009).

30.
A. Alu and N. Engheta, J. Opt. A-Pure. Appl. Op. 10, 093002 (2008). crossref(new window)

31.
Y. Cui, R. S. Hegde, I. Y. Phang, H. K. Lee, and X. Y. Ling, Nanoscale, 6, 282 (2014). crossref(new window)

32.
A. Fatima, I. Mehra, and N. K. Nishchal, Proceedings of the 2014 International Conference on Fibre Optics and Photonics, (Kharagpur India, 13-16 December 2014) p. S5A. 52.

33.
R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, Mater. Today, 9, 20 (2006).

34.
M. L. Brongersma, R. Zia, and J. Schuller, Appl. Phys. A, 89, 221 (2007). crossref(new window)

35.
V. K. Valev, A. V. Silhanek, B. De Clercq, W. Gillijns, Y. Jeyaram, X. Zheng, V. Volskiy, O. A. Aktsipetrov, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verviest, small, 7, 2573 (2011). crossref(new window)

36.
S. A. Maier, Nature Photon. 2, 460 (2008). crossref(new window)

37.
J. Dionne, H. Lezec, and H. A. Atwater, Nano lett. 6, 1928 (2006). crossref(new window)

38.
P. Bai, M.-X. Gu, X.-C. Wei, and E.-P. Li, Opt. Express, 17, 24349, (2009). crossref(new window)

39.
Y. Yang, Q. Li, and M. Qiu, Scientific reports, 6, 19490 (2016). crossref(new window)

40.
E. Ozbay, science, 311, 189 (2006). crossref(new window)

41.
A. Alu and N. Engheta, Nature Photon. 2, 307 (2008). crossref(new window)

42.
D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. Moerner, Nano lett. 4, 957 (2004). crossref(new window)

43.
E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, Appl. Phys. Lett., 89, 093120 (2006). crossref(new window)

44.
P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, Nature Photon. 3, 283 (2009). crossref(new window)

45.
A. Crut, P. Maioli, N. Del Fatti, and F. Vallee, Chem. Soc. Rev. 43, 3921 (2014). crossref(new window)

46.
J. H. Son, B. Cho, S. Hong, S. H. Lee, O. Hoxha, A. J. Haack, and L. P. Lee, Light. Sci. Appl. 4, e280 (2015). crossref(new window)

47.
A. Glass, P. F. Liao, D. Olson, and L. Humphrey, Opt. Lett. 7, 575 (1982). crossref(new window)

48.
A. Sellai, Nucl. Instr. Meth. Phys. Res. A. 504, 170 (2003). crossref(new window)

49.
M. Rahman, A. Karakashian, S. Broude, and D. Gladden, Appl. Opt. 30, 2935 (1991). crossref(new window)

50.
J. Hetterich, G. Bastian, N. Gippius, S. Tikhodeev, G. Von Plessen, and U. Lemmer, IEEE J. Quant. Electron. 43, 855 (2007). crossref(new window)

51.
T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, Jpn. J. Appl. Phys. 44, L364 (2005). crossref(new window)

52.
P. Berini, Laser Photon. Rev. 8, 197 (2014). crossref(new window)

53.
J.-H. Kim and J.-S. Yeo, Nano lett. 15, 2291 (2015). crossref(new window)

54.
J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu, Small, 11, 2392 (2015). crossref(new window)

55.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, Nat. Nanotechnol. 6, 147 (2011). crossref(new window)

56.
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano, 6, 74 (2011).

57.
A. Ashimoto, C. Chen, I. Bakker, and J. Slots, "Polymerase chain reaction detection of 8 putative periodontal pathogens in subgingival plaque of gingivitis and advanced periodontitis lesions," Oral. Microbiol. Immun. 11, 266 (1996). crossref(new window)

58.
P. Grauballe, B. Vestergaard, A. Meyling, and J. Genner, J. Med. Virol. 7, 29 (1981). crossref(new window)

59.
D. Muir, S. Varon, and M. Manthorpe, Anal. Biochem. 185, 377 (1990). crossref(new window)

60.
F. Girosi, S. S. Olmsted, E. Keeler, D. C. H. Burgess, Y.-W. Lim, J. E. Aledort, M. E. Rafael, K. A. Ricci, R. Boer, L. Hilborne, K. P. Derose, M. V. Shea, C. M. Beighley, C. A. Dahl, and J. Wasserman, Nature, 444, 3 (2006). crossref(new window)

61.
T. S. Hauck, S. Giri, Y. Gao, and W. C. Chan, Adv. Drug Deliv. Rev. 62, 438 (2010). crossref(new window)

62.
X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanomedicine, 2, 681 (2007). crossref(new window)

63.
S. Kumar, N. Harrison, R. Richards-Kortum, and K. Sokolov, Nano lett. 7, 1338 (2007). crossref(new window)

64.
O. Limaj, D. Etezadi, N. J. Wittenberg, D. Rodrigo, D. Yoo, S.-H. Oh, Hatice altug, Nano letters, 2016. DOI: 10.1021/acs.nanolett.5 b05316

65.
K.-L. Lee, M.-L. You, C.-H. Tsai, E.-H. Lin, S.-Y. Hsieh, M.-H. Ho, J. -C. Hsu, and P. -K. Wei, Biosensors and Bioelectronics, 75, 88 (2016). crossref(new window)

66.
J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Nat. Mater. 7, 442 (2008). crossref(new window)

67.
V. Myroshnychenko, J. Rodriguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. G. de Abajo, Chem. Soc. Rev. 37, 1792 (2008). crossref(new window)

68.
M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzan, and L. M. Lechuga, ACS Nano, 4, 349 (2009).

69.
B. Sepulveda, P. C. Angelomé, L. M. Lechuga, and L. M. Liz- Marzan, Nano Today, 4, 244 (2009). crossref(new window)

70.
M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008). crossref(new window)

71.
I. Choi and Y. Choi, IEEE J. Sel. Top. Quantum Electron. 18, 1110 (2012). crossref(new window)

72.
J. R. L. Guerreiro, M. Frederiksen, V. E. Bochenkov, V. De Freitas, M. G. Ferreira Sales, and D. S. Sutherland, ACS Nano, 8, 7958 (2014). crossref(new window)

73.
S. Lee, K. M. Mayer, and J. H. Hafner, Anal. chem. 81, 4450 (2009). crossref(new window)

74.
K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, ACS Nano, 2, 687 (2008). crossref(new window)

75.
S. Chen, M. Svedendahl, R. P. V. Duyne, and M. Kall, Nano lett. 11, 1826 (2011). crossref(new window)

76.
P. K. Jain and M. A. El-Sayed, Chem. Phys. Lett. 487, 153 (2010). crossref(new window)

77.
C.-Y. Tsai, J.-W. Lin, C.-Y. Wu, P.-T. Lin, T.-W. Lu, and P.-T. Lee, Nano lett. 12, 1648 (2012). crossref(new window)

78.
X. Qian, X. Zhou, and S. Nie, J. Am. Chem. Soc. 130, 14934 (2008). crossref(new window)

79.
C. Tabor, D. Van Haute, and M. A. El-Sayed, ACS Nano, 3, 3670 (2009). crossref(new window)

80.
J. H. Yoon and S. Yoon, Langmuir, 29, 14772 (2013). crossref(new window)

81.
P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, Plasmonics, 2, 107 (2007). crossref(new window)

82.
J. Park and J.-S. Yeo, Chem. Commun. 50, 1366, (2014). crossref(new window)

83.
A. A. Tseng, Small, 1, 924 (2005). crossref(new window)

84.
S. Matsui, T. Kaito, J.-i. Fujita, M. Komuro, K. Kanda, and Y. Haruyama, J. Vac. Sci. Technol. B, 18, 3181 (2000). crossref(new window)

85.
C. Vieu, F. Carcenac, A. Pepin, Y. Chen, M. Mejias, A. Lebib, L. Mannin-Ferlazzo, L. Couraud, and H. Launois, Appl. Surf. Sci. 164, 111 (2000). crossref(new window)

86.
H. Seyringer, B. Funfstuck, and F. Schaffler, The Society of Microelectronics-Annual Report 1999

87.
B. Wu and A. Kumar, J. Vac. Sci. Technol. B, 25, 1743 (2007). crossref(new window)

88.
Q. Li, J. Zheng, and Z. Liu, Langmuir, 19, 166 (2003). crossref(new window)

89.
S. Aksu, M. Huang, A. Artar, A. A. Yanik, S. Selvarasah, M. R. Dokmeci, and H. Altug, Adv. Mater. 23, 4422 (2011). crossref(new window)

90.
S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, ACS Nano, 5, 897 (2011). crossref(new window)

91.
J. A. Rogers and R. G. Nuzzo, Mater. Today, 8, 50 (2005).

92.
C. L. Haynes and R. P. Van Duyne, J. Phys. Chem. B, 105, 5599 (2001). crossref(new window)

93.
H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zach, and B. Kasemo, Adv. Mater. 19, 4297 (2007). crossref(new window)

94.
Z. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley, H. Razavi, and A. Javey, Nano lett. 8, 20 (2008). crossref(new window)

95.
D. Y. Khang, H. Yoon, and H. H. Lee, Adv. Mater. 13, 749 (2001). crossref(new window)

96.
S. J. Barcelo, A. Kim, W. Wu, and Z. Li, ACS Nano, 6, 6446 (2012). crossref(new window)

97.
J. Lee, J. Park, J. Y. Lee, and J. S. Yeo, Adv. Sci. 2, 1500121, (2015). crossref(new window)

98.
G. V. Naik, V. M. Shalaev, and A. Boltasseva, Adv. Mater. 25, 3264 (2013). crossref(new window)

99.
N. Kinsey, M. Ferrera, V. Shalaev, and A. Boltasseva, J. Opt. Soc. Am. 32, 121 (2015). crossref(new window)