JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Effect of Dodecane on the Surface Structure and the Electronic Properties of Pentacene on Modified Si (001)
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Effect of Dodecane on the Surface Structure and the Electronic Properties of Pentacene on Modified Si (001)
Kim, Beom-sik; Kang, Hee Jae; Seo, Soonjoo; Park, Nam Seok;
  PDF(new window)
 Abstract
The structural and the electronic properties of pentacene on modified Si (001) were investigated using scanning tunneling microscopy (STM), atomic force microscopy (AFM) and ultraviolet photoelectron spectroscopy (UPS). Dodecane was used to modify Si (001) substrates and then pentacene was deposited on dodecane/Si (001). Our STM results show a uniform distribution of aggregated dodecane molecules all over the clean Si (001). The surface structure of pentacene on dodecaene/Si (001) examined by AFM is analogous to that of pentacene on . The UPS data showed that the work function of pentacene on clean Si (001) and pentacene on modified Si (001) with dodecane was 6.41 and 5.57 eV, respectively. Our results prove that dodecane results in the work function difference between pentacene on clean Si (001) and pentacene on dodecane/Si (001).
 Keywords
Organic semiconductor;Organic-inorganic interface;Organic thin films;
 Language
English
 Cited by
 References
1.
H. E. Katz and Z Bao, J. Phys. Chem. 104, 671 (2000). crossref(new window)

2.
A. P. Kulkarni, C. J. Tonzola, A. Babel, and S. A. Jenekhe, Chem. Mater. 16, 4556 (2004). crossref(new window)

3.
C. Walduf, C. J. Brabec, P. Schilinsky, J. Hauch, and C. J. Brabec, Thin Solid Films 451, 503 (2004).

4.
B. de Boer, A. Hadipur, M. M. Mandoc, T. van Woudenbergh, and P. W. M. Blom, Adv. Mater. 17, 621 (2005). crossref(new window)

5.
S. H. Kim, J. H. Lee, S. C. Lim, Y. S. Yang, and T. H. Zyung, Jpn. J. Appl. Phys. Part 2, 43, L60 (2004). crossref(new window)

6.
K. Demirkan, A. Mathew, C. Weiland, Y. Yao, A. M. Rawlett, J. M. Tour, and R. L. Opila, J. Chem. Phys. 128, 074705 (2008). crossref(new window)

7.
I. G. Hill, A. Rajagopal, A. Kahn, and Y. Hu, Appl. Phys. Lett. 73, 662 (1998). crossref(new window)

8.
J. S. Kim, J. H. Park, J. H. Lee, J. Jo, D. Kim, and K. Cho, Appl. Phys. Lett. 91, 112111 (2007). crossref(new window)

9.
S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nat. Mater. 3, 317 (2004). crossref(new window)

10.
C. Huang, H. E. Katz, and J. E. West, Langmuir 23, 13223 (2007). crossref(new window)

11.
J. E. Northrup, Phys. Rev. B 66, 121404 (2202). crossref(new window)

12.
R. B. Campbell and J. M. Robertson, Acta. Crystallogr. 15, 289 (1962). crossref(new window)

13.
M. Meuris, P. W. Mertens, A. Opdebeek, H. F. Schmidt, M. Depas, G. Vereecke, M. M. Heyns, and A. Phillipossian, Solid State Technol., 38, 109 (1995).

14.
J. R. Lu, R. K. Thomas, B. P. Binks, P. D. I. Fletcher, and J. Penfold, J. Phys. Chem. 99, 4113 (1995). crossref(new window)

15.
S. Yim, N. Sonwalka, and N. Saka, J. Comput. Aided Mater. Des., 6:69 (1999). crossref(new window)