JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fabrication of Ultra-smooth 10 nm Silver Films without Wetting Layer
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Fabrication of Ultra-smooth 10 nm Silver Films without Wetting Layer
Devaraj, Vasanthan; Lee, Jongmin; Baek, Jongseo; Lee, Donghan;
  PDF(new window)
 Abstract
Using conventional deposition techniques, we demonstrate a method to fabricate ultra-smooth 10 nm silver films without using a wetting layer or co-depositing another material. The argon working pressure plays a crucial role in achieving an excellent surface flatness for silver films deposited by DC magnetron sputtering on an InP substrate. The formation of ultra-smooth silver thin films is very sensitive to the argon pressure. At the optimum deposition condition, a uniform silver film with an rms surface roughness of 0.81 nm has been achieved.
 Keywords
Silver;Ultra-thin;Surface roughness;Sputtering;Atomic force microscopy;Nanophotonics;
 Language
English
 Cited by
 References
1.
N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534-537 (2005). crossref(new window)

2.
P. Chaturvedi, W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Wang, Appl. Phys. Lett. 96, 043102 (2010). crossref(new window)

3.
X. Zhang, and Z. Liu, Nat. Mater. 7, 435-441 (2008). crossref(new window)

4.
Y. Sonnefraud, N. Verellen, H. Sobhani, G. A. E. Vandenbosch, V. V. Moschalkov, P. V. Dorpe, P. Norlander, and S. A. Maier, ACS Nano 4, 1664-1670 (2010). crossref(new window)

5.
J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, Nature 455, 376-379 (2008). crossref(new window)

6.
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, Science 336, 205-209 (2012). crossref(new window)

7.
Y. J. Lu, J. Kim, H.Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C. Y. Wang, M. Y. Lu, B. H. Li, X. Qiu, W. H. Chang, L. J. Chen, G. Shvets, C. K. Shih, and S. Gwo, Science 337, 450-453 (2012). crossref(new window)

8.
P. B. Johnson, and R. W. Christy, Phys. Rev. B 6, 4370 (1972). crossref(new window)

9.
M. Specht, J. D. Pedarnig, W. H. Heckl, and T. W. Hansch, Phys. Rev. Lett. 68, 476 (1992). crossref(new window)

10.
H. K. Yuan, U. K. Chettiar, W. Cai, A. V. Kildishev, A. Boltasseva, V. P. Drachev, and V. M. Shalaev, Opt. Express 15, 1076-1083 (2007). crossref(new window)

11.
S. B. Sant, K. S. Gill, and R. E. Burell, Acta Biomater. 3, 341-350 (2007). crossref(new window)

12.
F. Jing, H. Tong, L. Kong, and C. Wang, Appl. Phys. A-Mater. 80, 597-600 (2005). crossref(new window)

13.
Y. Chi, E. Lay, T. Y. Chou, Y. H. Song, and A. J. Carty, Chem. Vap. Depos. 11, 206-212 (2005). crossref(new window)

14.
R. S. Sennett and G. D. Scott, J. Opt. Soc. Am. A 40, 203-211 (1950). crossref(new window)

15.
R. Lazzari and J. Jupille, Surf. Sci. 482-485, 823-828 (2005).

16.
V. J. Logeeswaran, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, Nano Lett. 9, 178-182 (2009). crossref(new window)

17.
W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, Opt. Express 18, 5124-5134 (2010). crossref(new window)

18.
W. Chen, K. P. Chen, M. D. Thoreson, A. V. Kildshev, and V. M. Shalaev, Appl. Phys. Lett. 97, 211107 (2010). crossref(new window)

19.
N. Formica, D. S. Ghosh, A. Carrilero, T. L. Chen, R. E. Simpson, and V. Pruneri, ACS Appl. Mater. Interfaces 5, 3048-3053 (2013). crossref(new window)

20.
H. Liu, B. Wang, E. S. P. Leong, P. Yang, Y. Zong, G. Si, J. Teng, and S. A. Maier, ACS Nano 4, 3139-3146 (2010). crossref(new window)

21.
C. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y. K. R. Wu, and L. J. Guo, Adv. Mater. 26, 5696-5701 (2014). crossref(new window)

22.
N. E. Duygulu, A. O. Kodolbas, and A. Ekerim, J. Cryst. Growth. 394, 116-125 (2014). crossref(new window)