Advanced SearchSearch Tips
Various Quantum Ring Structures: Similarity and diversity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Various Quantum Ring Structures: Similarity and diversity
Park, Dae-Han; Kim, Nammee;
  PDF(new window)
Similarity and diversity of various quantum ring structures are investigated by classifying energy dispersions of three different structures: an electrostatic quantum ring, a magnetic quantum ring, and a magnetic-electric quantum ring. The wave functions and the eigenenergies of a single electron in the quantum ring structures are calculated by solving the Schrdinger equation without any electron-electron interaction. Magnetoconductance is studied by calculating a two-terminal conductance while taking into account the backscattering via the resonance through the states of the quantum rings at the center of a quasi-one dimensional conductor. It is found that the energy spectra for the various quantum ring structures are sensitive to additional electrostatic potentials as well as to the effects of a nonuniform magnetic field. There are also characteristics of similarity and diversity in the energy dispersions and in the single-channel magnetoconductance.
Single particle states;Electronic transport;Hybrid Quantum Structure;Magnetoconductance;
 Cited by
M. A. McCord and D. D. Awschalom, Appl. Phys. Lett. 57, 2153 (1990). crossref(new window)

M. L. Leadbeater, S. J. Allen, Jr., F. DeRosa, J. P. Harbison, T. Sands, R. Ramesh, L. T. Florez, and V. G. Keramidas, J. Appl. Phys. 69, 4689 (1991). crossref(new window)

S. H. Park and H. -S. Sim, Phys. Rev. B 77, 075433 (2008). crossref(new window)

C.M. Lee, R. C.H. Lee, W.Y. Ruan, M.Y. Chou, and A. Vyas, Solid State Commun. 156, 49 (2013) crossref(new window)

C. M. Lee and K. S. Chan, J. Appl. Phys. 114, 143708 (2013). crossref(new window)

Dali Wang and Guojun Jin, Phys. Lett. A 373, 4082 (2009). crossref(new window)

F. M. Peeters and A. Matulis, Phys. Rev. B 48, 15166 (1993) crossref(new window)

F. M. Peeters and A. Matulis, Phys. Rev. Lett. 72, 1518 (1994) crossref(new window)

I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 52, 17321 (1995) crossref(new window)

I. S. Ibrahim and F. M. Peeters, Phys. Rev. B 56, 7508 (1997). crossref(new window)

H-S. Sim, K-H. Ahn, K. J. Chang, G.Ihm, N. Kim, and S. J. Lee, Phys. Rev. Lett. 80, 1501 (1998) crossref(new window)

H. -S. Sim, G. Ihm, N, Kim, S. J. Lee, and K. J. Chang, Physica E, 12, 719 (2002). crossref(new window)

J. E. Muller, Phys. Rev. Lett. 68, 385 (1992). crossref(new window)

M. Calvo, Phys. Rev. B 48, 2365 (1993) crossref(new window)

M. Calvo, Phys. Rev. B 51, 2268 (1995). crossref(new window)

N. Kim, G. Ihm, H.-S. Sim, and K. J. Chang, Phys. Rev. B 60, 8767 (1999). crossref(new window)

Y. Takagaki and D. K. Ferry, Phys. Rev B. 48, 8152 (1993). crossref(new window)

R. Garibay-Alomso, J. L. Marin and R. A. Rosas, Solid States Commun. 137, 248 (2006).

W.-C. Tan and J. C. Inkson, Phys. Rev. B 53, 6947 (1996). crossref(new window)

U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320 (1991) crossref(new window)

M.Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B 45, 1951 (1992).