Advanced SearchSearch Tips
Surface Treatment of a Titanium Implant using a low Temperature Atmospheric Pressure Plasma Jet
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
Surface Treatment of a Titanium Implant using a low Temperature Atmospheric Pressure Plasma Jet
Lee, Hyun-Young; Ok, Jung-Woo; Lee, Ho-Jun; Kim, Gyoo Cheon; Lee, Hae June;
  PDF(new window)
The surface treatment of a titanium implant is investigated with a non-thermal atmospheric pressure plasma jet. The plasma jet is generated by the injection of He and gas mixture with a sinusoidal driving voltage of 3 kV or more and with a driving frequency of 20 kHz. The generated plasma plume has a length up to 35 mm from the jet outlet. The wettability of 4 different titanium surfaces with plasma treatments was measured by the contact angle analysis. The water contact angles were significantly reduced especially for mixture plasma, which was explained with the optical emission spectroscopy. Consequently, plasma treatment enhances wettability of the titanium surface significantly within the operation time of tens of seconds, which is practically helpful for tooth implantation.
Atmospheric pressure plasma;Plasma jet;Surface treatment;
 Cited by
A. West, M. van der Schans, C. Xu, M. Cooke, and E. Wagenaars, Plasma Sources Sci. Technol. 25, 02LT01 (2016). crossref(new window)

X. Lu, G. V. Naidis, M. Laroussi, S. Reuter, D. B. Graves, and K. Ostrikov, Phys. Reports 630, 1 (2016). crossref(new window)

J. Garcia-Torres, D. Sylla, L. Molina, E. Crespo, J. Mota, and L. Bautista, Appl. Surf. Sci. 305, 292 (2014). crossref(new window)

J. H. Yim, V. Rodriguez-Santiago, A. A. Williams, T. Gougousi, D. D. Pappas, and J. K. Hirvonen, Surf. Coat. Technol. 234, 21 (2013). crossref(new window)

D. Mariotti, Appl. Phys. Lett. 92, 151505 (2008). crossref(new window)

P. Chu, IEEE Trans. Plasma Sci. 35, 181 (2007). crossref(new window)

G. Fridman, A. Brooks, M. Galasubramanian, A. Fridman, A. Gutsol, V. Vasilets, H. Ayan, and G. Friedman, Plasma Processes Polym. 4, 370 (2007). crossref(new window)

J. Park, I. Henins, H. W. Herrman, G. S. Selwyn, and R. F. Hicks, J. Appl. Phys. 89, 20 (2001). crossref(new window)

K. T. Rie, T. Stucky, R. A. Silva, E. Leitao, K. Bordji, J. Y. Jouzeau, and D. Mainard, Surface and Coatings Technology 74-75, 973-980 (1995). crossref(new window)

P. I. Branemark, B. O. Hansson, R. Adell, U. Breine, J. Lindstrom, O. Hallen, and A. Ohman, Scand. J. Plast. Reconstr. Surg. Suppl. 16, 1-132 (1977).

T. Albrektsson, P. I Branemark, H. A. Hansson, and J. Lindstrom, Osseointegrated titanium implants anchorage in man (Springer-Verlag, London, 1981) p.155.

C. Von Wilmowsky, S. Bauer, R. Lutz, M. Meisel, F. W. Neukam, T. Toyoshima, P. Schmuki, E. Nkenke, and K. A. Schlegel, J. Biomed. Mater. Res. B. 89, 165 (2009).

S. Ponader, C. Von Wilmowsky, M. Widenmayer, R. Lutz, P. Heinl, C. Korener, R. F. Singer, E. Nkenke, F. W. Neukam, and K. A. Schlegel, J. Biomed. Mater. Res. A. 92, 56 (2010).

G. Zhao, Z. Schwartz, M. Wieland, F Rupp, J. Geis-Gerstorfer, D. L. Cochran, and B. D. Boyan, J. Biomed. Mater. Res. A 74, 49-58 (2005).

P. G. Coelho, G. Giro, H. S. Teixeira, C. Marin, L. Witek, V. P. Thompson, N. Tovar, and N. R. F. A. Silva, and J. Biomed. Mater. Res. A. 100, 1901 (2012).

B. O. Aronsson, J. Lausmaa, and B. Kasemo, J. Biomed. Mater. Res. A. 35, 49 (1997). crossref(new window)

P. G. Coelho, C. Marin, R. Granato, G. Giro, M. Suzuki, and E. A. Bonfante, Clin. Oral. Implants. Res. 23, 132-135 (2012). crossref(new window)

G. Giro, N. Tovar, L. Witek, C. Marin, N. R. F. Silva, E. A. Bonfante, and P. G. Coelho, J. Biomed. Mater. Res. A 101, 98-103 (2013).

Y. Hirakawa, R. Jimbo, Y. Shibata, I. Watanabe, A. Wennerberg, and T. Sawase, Clin. Oral. Implants. Res. 24, 139-144 (2013). crossref(new window)

R. Jimbo, D. Ono, Y. Hirakawa, T. Odatsu, T. Tanaka, and T. Sawase, Clin. Implant. Dent. Relat. Res. 13, 79-85 (2011). crossref(new window)

G. C. Kim, H. W. Lee, J. H. Byun, J. Chung, Y. C. Jeon, and J. K. Lee, Plasma. Process. Polym. 10, 199-206 (2013). crossref(new window)

R. E. J. Sladek, E. Stoffels, R. Walraven, P. J. A. Tielbeek, and R. A. Koolhoven, IEEE Trans. Plasma Sci. 32, 1540-1543 (2004). crossref(new window)

C. Schanudinn, D. Jaramillo, M. O. Freire, P. P. Sedghizadeh, A. Nguyen, P. Webster, J. W. Costerton, and C. Jiang, Int. Endod. J. 46, 930-937 (2013). crossref(new window)

T. Du, J. Ma, P. Yang, Z. Xiong, X. Lu, and Y. Cao, J. Endod. 38, 545-549 (2012). crossref(new window)

A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998). crossref(new window)

M. Laroussi, IEEE Trans. Plasma Sci. 36, 1298 (2008). crossref(new window)

E. Stoffels, A. J. Filkweert, W. W. Stoffels, and G. M. W. Kroesen, Plasma Sources Sci. Technol. 11, 383 (2002). crossref(new window)

Q. Xiong, X. Lu, K. Ostrikov, Z. Xiong, Y. Xian, F. Zhou, C. Zou, J. Hu, W. Gong, and Z. Jiang, Phys. Plasmas 16, 043505 (2009). crossref(new window)

K. H. Becker ,U. Kogelschatz, K. H. Schoenbach, and R. J. Barker, Non-Equilibrium Air Plasmas at Atmospheric Pressure (IOP, UK, 2005).

N. Sakai, A. Fujishima, T. Watanabe, and K. Hashimoto, J Phys. Chem. B 105, 3023 (2001). crossref(new window)