JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium
Nguyen, Hoang Hiep; Yi, So Yeon; Woubit, Abdela; Kim, Moonil;
  PDF(new window)
 Abstract
Here, the rapid detection of Salmonella typhimurium by a portable surface plasmon resonance (SPR) biosensor in which the beam from a diode laser is modulated by a rotating mirror is reported. Using this system, immunoassay based on lipopolysaccharides (LPS)-specific monoclonal anti-Salmonella antibody was performed. For the purpose of orientation-controlled immobilization of antibodies on the SPR chip surface, the cysteine-mediated immobilization method, which is based on interaction between a gold surface and a thiol group (-SH) of cysteine, was adopted. As a result, using the portable SPR-based immunoassay, we detected S. typhimurium in the range from 10^7 CFU/mL to 10^9 CFU/mL within 1 hour. The results indicate that the portable SPR system could be potentially applied for general laboratory detection as well as on-site monitoring of foodborne, clinical, and environmental agents of interest.
 Keywords
Biosensor;surface plasmon resonance;portable SPR;Salmonella typhimurium;Foodborne pathogen;
 Language
English
 Cited by
1.
Microcontact Imprinted Plasmonic Nanosensors: Powerful Tools in the Detection of Salmonella paratyphi, Sensors, 2017, 17, 6, 1375  crossref(new windwow)
 References
1.
M. M. Arshad, M. J. Wilkins, F. P. Downes, M. H. Rahbar, R. J. Erskine, M. L. Boulton, and A. M. Saeed, Foodborne Pathog. Dis. 4, 16 (2007). crossref(new window)

2.
H. L. Alakomi, and M. Saarela, Qual. Assur. Saf. Crop. 1, 142e152 (2009). crossref(new window)

3.
K. G. Maciorowski, P. Herrera, F. T. Jones, S. D. Pillai, and S. C. Ricke, Vet. Res. Commun. 30, 127e137 (2006).

4.
J. M. Eijkelkamp, H. J. M. Aarts, and H. J. van der Fels-Klerx, Food Anal. Method. 2, 1 (2009). crossref(new window)

5.
B. Malorny, J. Hoorfar, C. Bunge, and R. Helmuth, Appl. Environ. Microbiol. 69, 290 (2003). crossref(new window)

6.
M. A. Mozola and J. AOAC Int. 89, 517 (2006).

7.
A. Woubit, T. Yehualaeshet, S. Roberts, M. Graham, M. Kim, and T. Samuel, J. Food Prot. 76, 1948 (2013). crossref(new window)

8.
H. H. Nguyen, J. Park, S. Kang, and M. Kim, Sensors 15, 10481 (2015). crossref(new window)

9.
J. Homola, Anal. Bioanal. Chem. 377, 528 (2003). crossref(new window)

10.
M. A. Cooper, Anal. Bioanal. Chem. 377, 834 (2003). crossref(new window)

11.
S. D. Mazumdar, B. Barlen, P. Kampfer, and M. Keusgen, Biosens. Bioelectron. 25, 967 (2010). crossref(new window)

12.
G. C. M. B. Bokken, R. J. Corbee, F. Knapen, and A. A. Bergwerff, FEMS Microbiol. Lett. 222, 75 (2003). crossref(new window)

13.
D. Zhang, Y. Yan, Q. Li, T. Yu, W. Cheng, L. Wang, H. Ju, and S. Ding, J. Biotechnol. 160, 123 (2012). crossref(new window)

14.
J. M. Lee, H. K. Park, Y. Jung, J. K. Kim, S. O. Jung, and B. H. Chung, Anal. Chem. 79, 2680 (2007). crossref(new window)

15.
Y. B Shin, H. M. Kim, Y. Jung, and B. H. Chung, Sensor. Actuat. B-Chem. 150, 1 (2010). crossref(new window)

16.
B. Barlen, S. D. Mazumdar, O. Lezrich, P. Kampfer, and M. Keusgen, Sensors 7, 1427 (2007). crossref(new window)