JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Another Look at Average Formulas of Nevanlinna Counting Functions of Holomorphic Self-maps of the Unit Disk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 1,  2008, pp.155-163
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.1.155
 Title & Authors
Another Look at Average Formulas of Nevanlinna Counting Functions of Holomorphic Self-maps of the Unit Disk
Kim, Hong-Oh;
  PDF(new window)
 Abstract
This is an extended version of the paper [K] of the author. The average formulas on the circles and disks around arbitrary points of Nevanlinna counting functions of holomorphic self-maps of the unit disk, given in terms of the boundary values of the selfmaps, are shown to give another characterization of the whole class or a special subclass of inner functions in terms of Nevanlinna counting function in addition to the previous applications to Rudin`s orthogonal functions.
 Keywords
Nevanlinna counting function;inner function;sub-averaging property;orthogonal function;
 Language
English
 Cited by
1.
Complete Nevanlinna counting functions of boundary-preserving Nevanlinna functions, Complex Variables and Elliptic Equations, 2015, 60, 1, 118  crossref(new windwow)
2.
Nevanlinna counting function and Carleson function of analytic maps, Mathematische Annalen, 2011, 351, 2, 305  crossref(new windwow)
 References
1.
C. J. Bishop, Orthogonal functions in $H^{\infty}$, Pacific J. Math, 228(2005), 1-31.

2.
O. Frostman, Potentiel d´equilibre et capacite des ensembles, Lunds Univ. Mat. Sem. 3, 1935.

3.
J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, 96. Academic Press, New York-London 1981.

4.
P. Gorkin and K. Izuch, Some counter examples in subalgebras of $L^{\infty}$(D), Indiana Univ. Math. J., 40(1991), 1301-1313. crossref(new window)

5.
H. O. Kim, Averages of Nevanlinna counting functions of holomorphic self-maps of the unit disk, Hokkaido Math. J., 33(2004), 697-706. crossref(new window)

6.
R. Mortini and A. Nicolau, Frostman shifts of inner functions, J. D'Analyse Math., 92(2004), 285-326. crossref(new window)

7.
W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill Book Co., New York-Auckland-Dusseldorf 1976.

8.
W. Rudin, Real and Complex Analysis, 3d ed., McGraw-Hill Book Co., New York 1987.

9.
W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam 1969.

10.
W. Rudin,A generalization of a theorem of Frostman, Math. Scand., 21(1967), 136-143. crossref(new window)

11.
C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, J. AMS, 16(2003), 68-90.

12.
J. H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York 1993.