JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Another Look at Average Formulas of Nevanlinna Counting Functions of Holomorphic Self-maps of the Unit Disk
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 1,  2008, pp.155-163
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.1.155
 Title & Authors
Another Look at Average Formulas of Nevanlinna Counting Functions of Holomorphic Self-maps of the Unit Disk
Kim, Hong-Oh;
  PDF(new window)
 Abstract
This is an extended version of the paper [K] of the author. The average formulas on the circles and disks around arbitrary points of Nevanlinna counting functions of holomorphic self-maps of the unit disk, given in terms of the boundary values of the selfmaps, are shown to give another characterization of the whole class or a special subclass of inner functions in terms of Nevanlinna counting function in addition to the previous applications to Rudin's orthogonal functions.
 Keywords
Nevanlinna counting function;inner function;sub-averaging property;orthogonal function;
 Language
English
 Cited by
1.
Nevanlinna counting function and Carleson function of analytic maps, Mathematische Annalen, 2011, 351, 2, 305  crossref(new windwow)
2.
Complete Nevanlinna counting functions of boundary-preserving Nevanlinna functions, Complex Variables and Elliptic Equations, 2015, 60, 1, 118  crossref(new windwow)
 References
1.
C. J. Bishop, Orthogonal functions in $H^{\infty}$, Pacific J. Math, 228(2005), 1-31.

2.
O. Frostman, Potentiel d´equilibre et capacite des ensembles, Lunds Univ. Mat. Sem. 3, 1935.

3.
J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, 96. Academic Press, New York-London 1981.

4.
P. Gorkin and K. Izuch, Some counter examples in subalgebras of $L^{\infty}$(D), Indiana Univ. Math. J., 40(1991), 1301-1313. crossref(new window)

5.
H. O. Kim, Averages of Nevanlinna counting functions of holomorphic self-maps of the unit disk, Hokkaido Math. J., 33(2004), 697-706. crossref(new window)

6.
R. Mortini and A. Nicolau, Frostman shifts of inner functions, J. D'Analyse Math., 92(2004), 285-326. crossref(new window)

7.
W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill Book Co., New York-Auckland-Dusseldorf 1976.

8.
W. Rudin, Real and Complex Analysis, 3d ed., McGraw-Hill Book Co., New York 1987.

9.
W. Rudin, Function theory in polydiscs, W. A. Benjamin, Inc., New York-Amsterdam 1969.

10.
W. Rudin,A generalization of a theorem of Frostman, Math. Scand., 21(1967), 136-143. crossref(new window)

11.
C. Sundberg, Measures induced by analytic functions and a problem of Walter Rudin, J. AMS, 16(2003), 68-90.

12.
J. H. Shapiro, Composition operators and classical function theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York 1993.