JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On the Generalized Hyers-Ulam-Rassias Stability for a Functional Equation of Two Types in p-Banach Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 1,  2008, pp.45-61
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.1.045
 Title & Authors
On the Generalized Hyers-Ulam-Rassias Stability for a Functional Equation of Two Types in p-Banach Spaces
Park, Kyoo-Hong; Jung, Yong-Soo;
  PDF(new window)
 Abstract
We investigate the generalized Hyers-Ulam-Rassias stability in p-Banach spaces for the following functional equation which is two types, that is, either cubic or quadratic: 2f(x+3y) + 6f(x-y) + 12f(2y)
 Keywords
stability;cubic mapping;quadratic mapping;quasi-normed spaces;p-Banach spaces;
 Language
English
 Cited by
1.
A General System of Nonlinear Functional Equations in Non-Archimedean Spaces,;;;

Kyungpook mathematical journal, 2013. vol.53. 3, pp.419-433 crossref(new window)
1.
A General System of Nonlinear Functional Equations in Non-Archimedean Spaces, Kyungpook mathematical journal, 2013, 53, 3, 419  crossref(new windwow)
 References
1.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge Univ. Press, 1989.

2.
J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80(1980), 411-416. crossref(new window)

3.
Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Vol. 1, Colloq. Publ. 48, Amer. Math. Soc. Providence, 2000.

4.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., 27(1984), 76-86. crossref(new window)

5.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg, 62(1992), 59-64. crossref(new window)

6.
S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publ. Co., New Jersey, London, Singapore, Hong Kong, 2002.

7.
S. Czerwik(ed), Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Inc., Palm Harbor, Florida, 2003.

8.
V. A. Faiziev, Th. M. Rassias and P. K. Sahoo, The space of (${\psi},{\gamma}$)-additive mappings on semigroups, Trans. Amer. Math. Soc., 364(11)(2002), 4455-4472.

9.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14(1991), 431-434. crossref(new window)

10.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately additive mappings, J. Math. Anal. Appl., 184(1994), 431-436. crossref(new window)

11.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27(1941), 222-224. crossref(new window)

12.
D. H. Hyers, G. Isac and Th. M. Rassias, "Stability of Functional Equations in Several Variables", Birkhauser, Basel, 1998.

13.
D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126(1998), 425-430. crossref(new window)

14.
K. -W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl., 274(2)(2002), 867-878. crossref(new window)

15.
S. -M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222(1998), 126-137. crossref(new window)

16.
S. -M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.

17.
S. -M. Jung, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl., 232(1999), 384-393. crossref(new window)

18.
N. Kalton, N. T. Peck, and W. Roberts, An F-Space Sampler, London Mathematical Society Lecture Note Series 89, Cambridge University Press, (1984).

19.
Pl. Kannappan, Quadratic functional equation and inner product spaces, Results Math., 27(1995), 368-372. crossref(new window)

20.
C. Park, Generalized quadratic mappings in several variables, Nonlinear Anal. -TMA, 57(2004), 713-722. crossref(new window)

21.
C. Park, Cauchy-Rassias stability of a generalized Trif 's mapping in Banach modules and its applications, Nonlinear Anal. -TMA, 62(2005), 595-613. crossref(new window)

22.
J. M. Rassias, Solution of the Ulam stability problem for cubic mappings, Glas. Mat., 36(1)(2001), 63-72.

23.
J. M. Rassias, On the Hyers-Ulam stability problem for quadratic multi-dimensional mappings, Aequationes Math., 64(2002), 62-69. crossref(new window)

24.
J. M. Rassias, On the Ulam stability of the mixed type mappings on restricted domains, J. Math. Anal. Appl., 276(2002), 747-762. crossref(new window)

25.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300. crossref(new window)

26.
Th. M. Rassias, The problems of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., 246(2000), 352-378. crossref(new window)

27.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl., 251(2000), 264-284. crossref(new window)

28.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Math. Appl., 62(2000), 23-130. crossref(new window)

29.
Th. M. Rassias (Ed.), "Functional Equations and inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.

30.
Th. M. Rassias (Ed.), "Functional Equations and Inequalities and Applications", Kluwer Academic, Dordrecht, Boston, London, 2003.

31.
Th. M. Rassias and J. Tabor, What is left of Hyers-Ulam stability?, Journal of Natural Geometry, 1(1992), 65-69.

32.
Th. M. Rassias and J. Tabor, "Stability of mappings of Hyers-Ulam type", Hadronic Press, Inc., Florida, 1994.

33.
Th. M. Rassias and P. Semrl, On the behavior of mappings which does not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc., 114(1992), 989-993. crossref(new window)

34.
S. Rolewicz, Metric Linear Spaces, Reidel and Dordrecht, and PWN-Polish Sci. Publ. 1984.

35.
F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129. crossref(new window)

36.
J. Tabor, Stability of the Cauchy functional equation in quasi-Banach spaces, Ann. Polon. Math., 83(2004), 243-255. crossref(new window)

37.
S. M. Ulam, Problems in Modern Mathematics, Chap. VI, Science ed., Wiley, New York, 1960.