JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On the Trajectory Null Scrolls in 3-Dimensional Minkowski Space-Time E13
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 1,  2008, pp.81-92
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.1.081
 Title & Authors
On the Trajectory Null Scrolls in 3-Dimensional Minkowski Space-Time E13
Ersoy, Soley; Tosun, Murat;
  PDF(new window)
 Abstract
In this paper, the trajectory scroll in 3-dimensional Minkowski space-time is given by a firmly connected oriented line moving with Cartan frame along curve. Some theorems and results between curvatures of base curve and distribution parameter of this surface are obtained. Moreover, some theorems and results related to being developable and minimal of this surface are given. And also, some relationships among geodesic curvature, geodesic torsion and the curvatures of base curve of trajectory scroll are found.
 Keywords
Null scroll;distribution parameter;mean curvature;Gaussian curvature;
 Language
English
 Cited by
1.
A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME,;;

대한수학회보, 2012. vol.49. 3, pp.635-645 crossref(new window)
1.
A STUDY ON A RULED SURFACE WITH LIGHTLIKE RULING FOR A NULL CURVE WITH CARTAN FRAME, Bulletin of the Korean Mathematical Society, 2012, 49, 3, 635  crossref(new windwow)
 References
1.
H. Frank and O. Giering, Verallgemeinerte Regelflachen, Math. Z., 150(1976), 261-271. crossref(new window)

2.
H. H. Hacisalihoglu, Diferensiyel Geometri, Inonu Uni. Fen-Edeb. Fak., 1983

3.
R. T. Farouki, The approximation off non-degenerate offset surfaces, Comp. Aided Geom. Design, 3(1986), 15-43. crossref(new window)

4.
B. Ravani and T. S. Ku, Bertrand offset and developable surfaces, Comp. Aided Geom. Design, 23(2)(1991), 145-152. crossref(new window)

5.
A. T. Yang, Y. Kirson and B. Roth, On a kinematics theory for ruled surface, Proceedings of Fourth World Congress on the theory of Machines and Mechanisms, Newcastle Upon Tyne, England, September, pp. 737-742, 1975.

6.
Y. H. Kim and D. W. Yoon, Classification of ruled surfaces in Minkowski 3-spaces, Journal of Geometry and Physics, 49(1)(2004), 89-100. crossref(new window)

7.
A. Turgut and H. H. Hacisalihoglu, Time-like ruled surfaces in the Minkowski 3-space, Tr. J. of Math., 22(1998), 33-46, Tubitak.

8.
V. D. I. Woestijine, Minimal surfaces of 3-dimensional Minkowski Space, word Scientific Publishing, Singapore, 344-369, 1990.

9.
A. Kucuk, On the developable time-like trajectory ruled surfaces in a Lorentz 3-space $R_{1}^{3}$, Appl. Math. Comput., 157(2004), 483-489. crossref(new window)

10.
K. L. Duggal and A. Bejancu, Lightlike Submanifolds of Semi Riemannian manifolds and applications, Kluwer Academic Publishers, Dorecht,1996.

11.
A. Ferrandez,A. Gimenez and P. Lucas, Null helices in Lorentzian space forms, Int. J. Mod. Phys., A 16(2001), 48 45-63. crossref(new window)

12.
B. Sahin, E. Kilic, and R. Gunes, Null Helices in $IR_{1}^{3}$, differential geometry dynamical systems, 3(2)(2001), 31-36.

13.
A. F. Yaliniz and H. H. Hacisalihoglu, Null generalized Helices in $L^{3}$and $L^{4}$, 3 and 4 dimensional Lorentzian space, Math. And Comp. Appl. 10(1)(2005),105-111.

14.
L. K. Graves, Codimension one isometric immersions between Lorentz space, Trans. Amer. Math. Soc., 252(1979), 367-392. crossref(new window)

15.
H. Balgetir. M. Bektas. and M. Ergut, Null scroll in the 3-dimensional Lorentzian space, Appl. Sciences, 5(1)(2003), 1-5.

16.
W. B. Bonnor, Null curves in a Minkowski space-time, Tensor N. S., 20(1969), 229-242.

17.
B. O'Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.

18.
K. Akutagawa and S. Nshkawa, The Gauss map and space-like surfaces with prescribed mean curvature in Minkowski 3-space, Thoku Math. J., 42(1990), 67-82. crossref(new window)

19.
T. Ikaw, On curves and submanifolds indefinite Riemannian manifold, Tsukuba J. Math., 9(2)(1985), 353-371.