JOURNAL BROWSE
Search
Advanced SearchSearch Tips
The Real Rank of CCR C*-Algebra
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 2,  2008, pp.223-232
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.2.223
 Title & Authors
The Real Rank of CCR C*-Algebra
Sudo, Takahiro;
  PDF(new window)
 Abstract
We estimate the real rank of CCR C*-algebras under some assumptions. A applications we determine the real rank of the reduced group C*-algebras of non-compac connected, semi-simple and reductive Lie groups and that of the group C*-algebras of connected nilpotent Lie groups.
 Keywords
C*-algebra;real rank;group C*-algebras;
 Language
English
 Cited by
1.
REAL RANK OF $C^*$-ALGEBRAS OF TYPE I,;

한국수학교육학회지시리즈B:순수및응용수학, 2010. vol.17. 4, pp.333-340
 References
1.
C. A. Akemann, G. K. Pedersen and J. Tomiyama, Multipliers of $C^{*}$-algebras, J. Funct. Anal., 13(1973), 277-301. crossref(new window)

2.
E. J. Beggs and D. E. Evans, The real rank of algebras of matrix valued functions, Internat. J. Math., 2(1991), 131-138. crossref(new window)

3.
L. G. Brown and G. K. Pedersen, $C^{*}$-algebras of real rank zero, J. Funct. Anal., 99(1991), 131-149. crossref(new window)

4.
J. Dixmier, $C^{*}$-algebras, North-Holland, Amsterdam, 1977.

5.
N. Elhage Hassan, Rang reel de certaines extensions, Proc. Amer. Math. Soc., 123(1995), 3067-3073.

6.
J. Hjelmborg and M. Rørdam, On stability of $C^{*}$-algebras, J. Funct. Anal., 155(1998), 153-170. crossref(new window)

7.
E. Kaniuth, Group $C^{*}$-algebras of real rank zero or one, Proc. Amer. Math. Soc., 119(1993), 1347-1354.

8.
K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.

9.
M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous $C^{*}$-algebra valued functions, Canad. J. Math., 53(2001), 979-1030. crossref(new window)

10.
V. Nistor, Stable rank for a certain class of type I $C^{*}$-algebras, J. Operator Theory, 17(1987), 365-373.

11.
G. K. Pedersen, $C^{*}$-Algebras and their Automorphism Groups, Academic Press, London-New York-San Francisco, 1979.

12.
M. A. Rieffel, Dimension and stable rank in the K-theory of $C^{*}$-algebras, Proc. London Math. Soc., 46(1983), 301-333. crossref(new window)

13.
T. Sudo, Stable rank of the reduced $C^{*}$-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc., 125(1997), 3647-3654. crossref(new window)

14.
T. Sudo, Dimension theory of group $C^{*}$-algebras of connected Lie groups of type I, J. Math. Soc. Japan, 52(2000), 583-590. crossref(new window)

15.
T. Sudo, Survey on the rank and structure theory of group $C^{*}$-algebras of Lie groups, Ryukyu Math. J., 13(2000), 79-95.

16.
T. Sudo, Stable rank of $C^{*}$-algebras of type I, Linear Algebra Appl., 383(2004), 65-76. crossref(new window)

17.
T. Sudo and H. Takai, Stable rank of the $C^{*}$-algebras of nilpotent Lie groups, Internat. J. Math., 6(1995), 439-446. crossref(new window)

18.
T. Sudo and H. Takai, Stable rank of the $C^{*}$-algebras of solvable Lie groups of type I, J. Operator Theory, 38(1997), 67-86.

19.
N. E.Wegge-Olsen, K-theory and $C^{*}$-algebras, Oxford Univ. Press, Oxford-New York-Tokyo, 1993.