JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Pascal Triangle and Properties of Bipartite Steinhaus Graphs
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 2,  2008, pp.331-335
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.2.331
 Title & Authors
Pascal Triangle and Properties of Bipartite Steinhaus Graphs
Lim, Dae-Keun;
  PDF(new window)
 Abstract
In this paper, we investigate the number of ones in rows of Pascal`s Rectangle. Using these results, we determine the existence of regular bipartite Steinhaus graphs. Also, we give an upper bound for the minimum degree of bipartite Steinhaus graphs.
 Keywords
Steinhaus graph;regular graph;bipartite graph;generating string;doubly symmetric;Pascal`s rectangle;
 Language
English
 Cited by
 References
1.
B. Bollobas, Graph Theory, Springer-Verlag, New York, 1979.

2.
C. K. Bailey and W. M. Dymacek, Regular Steinhaus graphs, Congr. Numer., 66(1988), 45-47.

3.
W. M. Dymacek, Bipartite Steinhaus graphs, Discrete Mathematics, 59(1986) 9-22. crossref(new window)

4.
W. M. Dymacek and T. Whaley Generating strings for bipartite Steinhaus graphs, Discrete Mathematics, 141(1995), no 1-3, 95-107. crossref(new window)

5.
W. M. Dymacek, M. Koerlin and T. Whaley A survey of Steinhaus graphs, Proceedings of the Eihgth Quadrennial Intrnational Conference on Graph Theory, Combinatorics, Algorithm and Applications, 313-323, Vol. 1, 1998.

6.
G. J. Chang, B. DasGupta, W. M. Dymacek, M. Furer, M. Koerlin, Y. Lee and T. Whaley, Characterizations of bipartite Steinhaus graphs, Discrete Mathematics, 199(1999) 11-25. crossref(new window)

7.
H. Harborth, Solution of Steinhaus's problem with plus and minus signs, J. Combinatorial Theory, 12(A)(1972), 253-259. crossref(new window)

8.
R. Stanley, Enumerative Combinatorics Volume I, Wadsworth, Inc., 1986.

9.
H. Steinhaus, One Hundred Problems in Elementary Mathematics, Dover, New York, 1979.