Advanced SearchSearch Tips
On Generalized Integral Operator Based on Salagean Operator
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 3,  2008, pp.359-366
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.3.359
 Title & Authors
On Generalized Integral Operator Based on Salagean Operator
Al-Kharsani, Huda Abdullah;
  PDF(new window)
Let A(p) be the class of functions analytic in the open unit disc E. Let, for any integer n > -p, . We define by using convolution * as . A function p, analytic in E with p(0) = 1, is in the class if , where , and . We use the class to introduce a new class of multivalent analytic functions and define an integral operator for f(z) belonging to this class. We derive some interesting properties of this generalized integral operator which include inclusion results and radius problems.
convolution;integral operator;functions with positive real part;convex functions;
 Cited by
M. Acu, A preserving property of the generalized Bernardi integral operator, General Mathematics, 12(3)(2004), 67-71.

M. K. Aouf and B. A. Al-amri, On certain fractional operators for certain subclasses of prestarlike functions defined by Salagean operator, Journal of Fractional Calculus, 22(2002), 47-56.

K. Inayat Noor, On subclasses of close-to-convex functions of higher order, Internal. J. Math. Sc., 15(1992), 279-290. crossref(new window)

K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math., 31(1975), 311-323.

S. Ponnusamy, Differential subordination and Bazievic functions, preprint.

G. Salagean, Subclasses of univalent functions, Complex Analysis, Fifth Roumanian-Finish Seminar, Lecture Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372. crossref(new window)

R. Singh and S. Sing, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145-152. crossref(new window)