JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Some Fixed Point Theorems for Multivalued Maps Satisfying an Implicit Relation on Metrically Convex Spaces
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 3,  2008, pp.367-377
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.3.367
 Title & Authors
Some Fixed Point Theorems for Multivalued Maps Satisfying an Implicit Relation on Metrically Convex Spaces
Altun, Ishak; Turkoglu, Duran;
  PDF(new window)
 Abstract
In this paper, we give some fixed point theorems for multivalued maps satisfying an implicit relation on metrically convex spaces. Our results extend and generalize some fixed point theorem in the literature.
 Keywords
fixed point;multivalued maps;implicit relation;metrically convex space;
 Language
English
 Cited by
 References
1.
A. Ahmad and M. Imdad, On common fixed point of mappings and multivalued mappings, Rad. Mat., 8(1) (1992), 147-158.

2.
A. Ahmad and M. Imdad, Some common fixed point theorems for mappings and multi-valued mappings, J. Math. Anal. Appl., 218(2) (1998), 546-560. crossref(new window)

3.
A. Ahmad and A. R. Khan, Some common fixed point theorems for non-self-hybrid contractions, J. Math. Anal. Appl., 213(1) (1997), 275-286. crossref(new window)

4.
I. Altun, H. A. Hancer and D. Turkoglu,A fixed point theorem for multi-maps satisfying an implicit relation on metrically convex metric spaces, Mathematical Commun., 11 (2006), 17-23.

5.
N. A. Assad, Fixed point theorems for set valued transformations on compact sets, Boll. Un. Mat. Ital., 8(4) (1973), 1-7.

6.
N. A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math., 43(3) (1972), 553-562. crossref(new window)

7.
Lj. B. Ciric, Fixed Point Theory, Faculty of Mechanical Engineering University of Belgrade, Beograd, 2003.

8.
Lj. B. Ciric and J. S. Ume, On an extension of a theorem of Rhoades, Rev. Roumaine Math. Pures Appl., 49(2) (2004), 103-112.

9.
B. C. Dhage, U. P. Dolhare and A. Petrusel, Some common fixed point theorems for sequences of non-self multivalued operators in metrically convex metric spaces, Fixed Point Theory, 4(2) (2003), 143-158.

10.
O. Hadzic, On coincidence points in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 19(2) (1989), 233-240.

11.
O. Hadzic and Lj. Gajic, Coincidence points for set-valued mappings in convex metric spaces, Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat., 16(1) (1986), 13-25.

12.
N. J. Huang and Y. J. Cho, Common fixed point theorems for a sequence of set-valued mappings, J. Korean Math. Soc., 4(1) (1997), 1-10.

13.
M. Imdad, A. Ahmad, and S. Kumar, On nonlinear nonself hybrid contractions, Rad. Mat., 10(2) (2001), 233-244.

14.
M. Imdad and Javid Ali, A common fixed point theorem for nonself multi-maps satisfying an implicit relation, Global J. Math. Anal., 1 (2007), 74-83.

15.
M. Imdad and L. Khan, Fixed point theorems for a family of hybrid pairs of mappings in metrically convex spaces, Fixed Point Theory Appl., 2005, no. 3, 281-294.

16.
M. Imdad, S. Kumar and M. S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math., 11 (1) (2002), 135-143.

17.
S. Itoh, Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, 18(2) (1977), 247-258.

18.
H. Kaneko and S. Sessa, Fixed point theorems for compatible multi-valued and singlevalued mappings, Int. J. Math. Math. Sci., 12(2) (1989), 257-262. crossref(new window)

19.
M. S. Khan, Common fixed point theorems for multivalued mappings, Pacific J. Math., 95(2) (1981), 337-347. crossref(new window)

20.
M. S. Khan, H. K. Pathak, and M. D. Khan, Some fixed point theorems in metrically convex spaces, Georgian Math. J., 7(3) (2000), 523-530.

21.
S. B. Nadler Jr., Multi-valued contraction mappings, Pacific J. Math., 30(2) (1969), 475-488. crossref(new window)

22.
R. P. Pant, Common fixed points of noncommuting mappings, J. Math. Anal. Appl., 188(2) (1994), 436-440. crossref(new window)

23.
V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonsratio Math., 32 (1999), 157-163.

24.
V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math., 33 (2000), 159-164.

25.
V. Popa and D. Turkoglu, Some fixed point theorems for hybrid contractions satisfying an implicit relation, Stud. Cercet. Stiin. Ser. Mat. Univ. Bacau, 1998, no. 8, 75-86 (2000).

26.
Rhoades B. E., A fixed point theorem for a multi-valued non-self mappings, Comment. Math. Univ. Carolinae, 37 (1996), 401-404.

27.
S. Sharma and B. Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math., 33(3) (2002), 245-252.