JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Permanence of a Three-species Food Chain System with Impulsive Perturbations
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 3,  2008, pp.503-514
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.3.503
 Title & Authors
Permanence of a Three-species Food Chain System with Impulsive Perturbations
Baek, Hunki; Lee, Hung-Hwan;
  PDF(new window)
 Abstract
We investigate a three-species food chain system with Lotka-Volterra functional response and impulsive perturbations. In [23], Zhang and Chen have studied the system. They have given conditions for extinction of lowest-level prey and top predator and considered the local stability of lower-level prey and top predator eradication periodic solution. However, they did not give a condition for permanence, which is one of important facts in population dynamics. In this paper, we establish the condition for permanence of the three-species food chain system with impulsive perturbations. In addition, we give some numerical examples.
 Keywords
Lotka-Volterra three-species food chain systems;impulsive differential equations;Floquet thoery;comparison theorem;
 Language
English
 Cited by
1.
Impulsive Effect on Tri-Trophic Food Chain Model with Mixed Functional Responses under Seasonal Perturbations, Differential Equations and Dynamical Systems, 2016  crossref(new windwow)
2.
Dynamic Complexities of a Three-Species Beddington-DeAngelis System with Impulsive Control Strategy, Acta Applicandae Mathematicae, 2010, 110, 1, 23  crossref(new windwow)
3.
Stability and bifurcation analysis on a three-species food chain system with two delays, Communications in Nonlinear Science and Numerical Simulation, 2011, 16, 9, 3704  crossref(new windwow)
 References
1.
R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics:Ratio-dependence, J. Theor. Biol., 139(1989), 311-326. crossref(new window)

2.
D.D. Bainov and P.S. Simeonov, Impulsive Differential Equations:Periodic Solutions and Applications, vol. 66, of Pitman Monographs and Surveys in Pure and Applied Mathematics, Longman Science & Technical, Harlo, UK, 1993.

3.
J. B. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36(1997), 149-168. crossref(new window)

4.
C. Cosner, D.L. DeAngelis, Effects of spatial grouping on the functional response of predators, Theoretical Popuation Biology, 56(1999), 65-75. crossref(new window)

5.
H. I. Freedman and R. M. Mathsen, Persistence in predator-prey systems with ratio-dependent predator influence, Bulletin of Math. Biology, 55(4)(1993), 817-827. crossref(new window)

6.
M. P. Hassell and G. C. Varley , New inductive population model for insect parasites and its bearing on biological control, Nature, 223(1969), 1133-1136. crossref(new window)

7.
S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55(3)(1995), 763-783. crossref(new window)

8.
S.-B. Hsu, T.-W. Hwang and Y. Kuang, Global dynamics of a predator-prey model with Hassell-Varley type functional response, Submittion for publication.

9.
K. Kitamura, K. Kashiwagi, K.-i. Tainaka, T. Hayashi, J. Yoshimura, T. Kawai and T. Kajiwara, Asymmetrical effect of migration on a prey-predator model, Physics Letters A, 357(2006), 213-217. crossref(new window)

10.
V Lakshmikantham, D. Bainov, P.Simeonov, Theory of Impulsive Differential Equations, World Scientific Publisher, Singapore, 1989.

11.
B. Liu, Y. Zhang and L. Chen, Dynamic complexities in a Lotka-Volterra predator-prey model concerning impulsive control strategy, Int. J. of Bifur. and Chaos, 15(2)(2005), 517-531. crossref(new window)

12.
B. Liu, Y. J. Zhang, L. S. Chen and L. H. Sun, The dynamics of a prey-dependent consumption model concerning integrated pest management, Acta Mathematica Sinica, English Series, 21(3)(2005), 541-554. crossref(new window)

13.
X. Liu and L. Chen, Complex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator, Chaos, Solitons and Fractals, 16(2003), 311-320. crossref(new window)

14.
S. Ruan and D. Xiao, Golbal analysis in a predator-prey sytem with non-monotonic functional response, SIAM J. Appl. Math., 61(4)(2001), 1445-1472. crossref(new window)

15.
E. Saez and E. Gonzalez-Olivares, Dynamics of a predator-prey model, SIAM J. Appl. Math., 59(5)(1999), 1867-1878. crossref(new window)

16.
G. T. Skalski and J. F. Gilliam, Funtional responses with predator interference: viable alternatives to the Holling type II mode, Ecology, 82(2001), 3083-3092. crossref(new window)

17.
W. Wang, X. Wang and Y. Lin, Complicated dynamics of a predator-prey system with Watt-type functional response and impulsive control strategy, Chaos, Solitons and Fractals(2006), doi:10.1016/j.chaos.2006.10.032. crossref(new window)

18.
Xiaoqin Wang, Weiming Wang, Yezhi Lin and Xiolin Lin, The dynamical complexity of an impulsive Watt-type prey-predator system, Chaos, Solitons and Fractals(2007), doi:10.1016/j.chaos.2007.08.019. crossref(new window)

19.
H. Wang and W. Wang, The dynamical complexity of a Ivlev-type prey-predator system with impulsive effect, Chaos, Solitons and Fractals(2007), doi:10.1016/j.chaos.2007.02.008. crossref(new window)

20.
W. Wang, H. Wang and Z. Li, The dynamic complexity of a three-species Beddington-type food chain with impulsive control strategy, Chaos, Solitons and Fractals, 32(2007), 1772-1785. crossref(new window)

21.
W. Wang, H. Wang and Z. Li, Chaotic behavior of a three-species Beddington-type system with impulsive perturbations, Chaos Solitons and Fractals, 37(2008), 438-443. crossref(new window)

22.
Z. Xiang and X. Song, The dynamical behaviors of a food chain model with im- pulsive effect anf Ivlev functional response, Chaos, Solitons and Fractals(2007), doi:10.1016/j.chaos.2007.06.124. crossref(new window)

23.
S. Zhang and L. Chen, Chaos in three species food chain system with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 73-83. crossref(new window)

24.
S. Zhang and L. Chen, A Holling II functional response food chain model with impulsive perturbations, Chaos Solitons and Fractals, 24(2005), 1269-1278. crossref(new window)

25.
S. Zhang, L. Dong and L. Chen, The study of predator-prey system with defensive ability of prey and impulsive perturbations on the predator, Chaos, Solitons and Fractals, 23(2005), 631-643. crossref(new window)

26.
Y. Zhang, B. Liu and L. Chen, Extinction and permanence of a two-prey one-predator system with impulsive effect, Mathematical Medicine and Biology, 20(2003), 309-325. crossref(new window)

27.
S. Zhang, D. Tan and L. Chen, Chaos in periodically forced Holling type IV predator-prey system with impulsive perturbations, Chaos, Solitons and Fractals, 27(2006), 980-990. crossref(new window)

28.
S. Zhang, D. Tan and L. Chen, Dynamic complexities of a food chain model with impulsive perturbations and Beddington-DeAngelis functional response, Chaos Solitons and Fractals, 27(2006), 768-777. crossref(new window)