JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Lévy Khinchin Formula on Commutative Hypercomplex System
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 4,  2008, pp.559-575
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.4.559
 Title & Authors
Lévy Khinchin Formula on Commutative Hypercomplex System
Zabel, Ahmed Moustfa; Dehaish, Buthinah Abdullateef Bin;
  PDF(new window)
 Abstract
A commutative hypercomplex system (Q,m) is, roughly speaking, a space which is defined by a structure measure (c(A,B, r), (A,(Q)). Such space has bee studied by Berezanskii and Krein. Our main purpose is to establish a generalization of convolution semigroups and to discuss the role of the Lvy measure in the Lvy-Khinchin representation in terms of continuous negative definite functions on the dual hypercomplex system.
 Keywords
Hypercomplex system;positive and negative definite functions;convolution semigroup;Lvy Khinchin formula;
 Language
English
 Cited by
1.
Exponentially Convex Functions on Hypercomplex Systems, International Journal of Mathematics and Mathematical Sciences, 2011, 2011, 1  crossref(new windwow)
 References
1.
Ju. M. Berezanskii and A. A. Kalyuzhnyi, Harmonic Analysis in Hypercomplex Systems, Kive, Naukova Dumka(1992).

2.
Ju. M. Berezanskii and A. A. Kalyuzhnyi, Hypercomplex systems and hypergroups: Connections and distributions, Contemporary Mathematics, 183(1995), 21-44. crossref(new window)

3.
Ju. M. Berezanskii and Ju. G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis, Kluwer Academic Publishers, Netherlands, 1(1995).

4.
C. Berg, J. P. R. Christensen and P. Ressel, Harmonic Analysis on Semigroups, Springer-Verlage, Berlin-Heidelberg-New York (1984).

5.
C. Berg and G. Forst, Potential Theory on Locally Compact Abelian Groups, Springer-Verlage, Berlin-Heidelberg-New York (1975).

6.
J. Faraut and M. A. Piardello, The Plancherel measure for symmetric groups, Ann. Math. Pure. Appl., 198(1982), 151-155.

7.
K. Harzallah, Sur une. demonstration de la formula de Levy Khinchine, Ann. Inst. Fourier, 192(1969), 527-532.

8.
W. Hazod, Uber die Levy Hincin Formel auf lokalkompakten topologischen Gruppen. Z., Wahrscheinlichkeitstheorie verw. Geb., 25(1973), 301-322. crossref(new window)

9.
G. A. Hunt, Semigroups of measures on Lie groups., Trans. Amer. Math. Soc., 81(1956), 264-293. crossref(new window)

10.
R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math., 18(1975), 1-101. crossref(new window)

11.
A. A. Kalyuzhnyi, A theorem on the existence of multiplicative measure, Ukr. Math. Zh., 35(3)(1983), 369-371.

12.
R. Lasser, On the Levy Hinˇcin formula for commutative hypergroups, Lecture Notes in Math, 1064(1984), 298-308. crossref(new window)

13.
K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, London, (1967).

14.
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co., New York, (1974).

15.
A. M. Zabal and Buthinah A. Bin Dehaish , Negative definite functions on hypercomplex systems, Accepted for publication in Kyungbook Math. J., 2007.