JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Strong Convergence of Modified Iteration Processes for Relatively Nonexpansive Mappings
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 48, Issue 4,  2008, pp.685-703
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2008.48.4.685
 Title & Authors
Strong Convergence of Modified Iteration Processes for Relatively Nonexpansive Mappings
Kim, Tae-Hwa; Lee, Hwa-Jung;
  PDF(new window)
 Abstract
Motivated and inspired by ideas due to Matsushida and Takahashi [J. Approx. Theory 134(2005), 257-266] and Martinez-Yanes and Xu [Nonlinear Anal. 64(2006), 2400-2411], we prove some strong convergence theorems of modified iteration processes for a pair (or finite family) of relatively nonexpansive mappings in Banach spaces, which improve and extend the corresponding results of Matsushida and Takahashi and Martinez-Yanes and Xu in Banach and Hilbert spaces, repectively.
 Keywords
strong convergence;modified Ishikawa`s iteration;relatively nonexpansive mapping;nonexpansive mappings;
 Language
English
 Cited by
1.
Strong Convergence of Modified Iteration Processes for Relatively Weak Nonexpansive Mappings,;;

Kyungpook mathematical journal, 2012. vol.52. 4, pp.433-441 crossref(new window)
1.
Strong Convergence of Modified Iteration Processes for Relatively Weak Nonexpansive Mappings, Kyungpook mathematical journal, 2012, 52, 4, 433  crossref(new windwow)
2.
Convergence theorems based on the shrinking projection method for variational inequality and equilibrium problems, Journal of Applied Mathematics and Computing, 2011, 37, 1-2, 159  crossref(new windwow)
3.
Parallel Hybrid Iterative Methods for Variational Inequalities, Equilibrium Problems, and Common Fixed Point Problems, Vietnam Journal of Mathematics, 2016, 44, 2, 351  crossref(new windwow)
 References
1.
Ya. I. Alber, Metric and generalized projection operators in Banach spaces: properties and applications, in: A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, pp. 15-50.

2.
Ya. I. Alber and S. Reich, An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. Math. J., 4(1994), 39-54.

3.
D. Butnariu, S. Reich and A. J. Zaslavski, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal., 7(2001), 151-174. crossref(new window)

4.
D. Butnariu, S. Reich and A. J. Zaslavski, Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim., 24(2003), 489-508. crossref(new window)

5.
Y. Censor and S. Reich, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, 37(1996), 323-339. crossref(new window)

6.
C. E. Chidume and S. A. Mutangadura, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129(2001), 2359-2363. crossref(new window)

7.
I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.

8.
A. Genel and J. Lindenstrass, An example concerning fixed points, Israel J. Math., 22(1975), 81-86. crossref(new window)

9.
K. Goebel and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972), 171-174. crossref(new window)

10.
B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc., 73(1967), 957-961. crossref(new window)

11.
S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44(1974), 147-150. crossref(new window)

12.
S. Kamimura and W. Takahashi, Strong convergence of a proxiaml-type algorithm in a Banach space, SIAM J. Optim., 13(2003), 938-945.

13.
T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal., 61(2005), 51-60. crossref(new window)

14.
T. H. Kim and H. K. Xu, Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal., 64(2006), 1140- 1152. crossref(new window)

15.
P. L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. S`er. A-B Paris, 284(1977), 1357-1359.

16.
W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4(1953), 506-510. crossref(new window)

17.
C. Martinez-Yanes and H. K. Xu, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal., 64(2006), 2400-2411. crossref(new window)

18.
S. Matsushita and W. Takahashi, A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. Approx. Theory, 134(2005), 257-266. crossref(new window)

19.
K. Nakajo and W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl., 279(2003), 372-379. crossref(new window)

20.
S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75(1980), 287-292. crossref(new window)

21.
S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67(1979), 274-276. crossref(new window)

22.
S. Reich, Review of Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990, Bull. Amer. Math. Soc., 26(1992), 367-370. crossref(new window)

23.
S. Reich, A weak convergence theorem for the alternating method with Bregman distance, in:A. G. Kartsatos (Ed.), Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Marcel Dekker, New York, 1996, pp. 313-318.

24.
N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 125(1997), 3641-3645. crossref(new window)

25.
W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.

26.
R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math., 58(1992), 486-491. crossref(new window)

27.
H. K. Xu, Existence and convergence for fixed points of mappings of asymptotically nonexpansive type, Nonlinear Anal., 16(1991), 1139-1146. crossref(new window)

28.
H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal., 16(1991), 1127-1138. crossref(new window)

29.
H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc., 66(2002), 240-256. crossref(new window)