JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Integral Transforms of Square Integrable Functionals on Yeh-Wiener Space
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 1,  2009, pp.155-166
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.1.155
 Title & Authors
Integral Transforms of Square Integrable Functionals on Yeh-Wiener Space
Kim, Byoung-Soo;
  PDF(new window)
 Abstract
We give a necessary and sufficient condition that a square integrable functional F(x) on Yeh-Wiener space has an integral transform which is also square integrable. This extends the result by Kim and Skoug for functional F(x) in .
 Keywords
Yeh-Wiener integral;integral transform;Fourier-Wiener transform;Fourier-Hermite functional;
 Language
English
 Cited by
1.
RELATIONSHIPS AMONG FOURIER-YEH-FEYNMAN TRANSFORM, CONVOLUTION AND THE FIRST VARIATION ON YEH-WIENER SPACE,;;

호남수학학술지, 2011. vol.33. 2, pp.207-221 crossref(new window)
1.
RELATIONSHIPS AMONG FOURIER-YEH-FEYNMAN TRANSFORM, CONVOLUTION AND THE FIRST VARIATION ON YEH-WIENER SPACE, Honam Mathematical Journal, 2011, 33, 2, 207  crossref(new windwow)
 References
1.
E. Berkson and T. A. Gillespie, Absolutely continuous functions of two variables and well-bounded operators, J. London Math. Soc., 30(1984), 305-321. crossref(new window)

2.
R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 485-488. crossref(new window)

3.
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J., 12(1945), 489-507. crossref(new window)

4.
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of functionals belonging to $L_2$ over the space C, Duke Math. J., 14(1947), 99-107. crossref(new window)

5.
R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J., 23(1976), 1-30. crossref(new window)

6.
K. S. Chang, B. S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funct. Anal. Optim., 21(2000), 97-105. crossref(new window)

7.
E. W. Hobson, The theory of functions of a real variable and the theory of Fourier's series, Vol. 1 (3rd ed.), Dover, New York, 1957.

8.
G. W. Johnson and D. L. Skoug, A stochastic integration formula for two-parameter Wiener$\times$two-parameter Wiener space, SIAM J. Math. Anal., 18(1987), 919-932. crossref(new window)

9.
B. J. Kim, B. S. Kim and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci., 2004(2004), 579-598. crossref(new window)

10.
B. J. Kim, B. S. Kim and I. Yoo, Integral transforms of functionals on a function space of two variables, submitted.

11.
B. S. Kim and D. Skoug, Integral transforms of functionals in $L_2(C_0[0,T])$, Rocky Mountain J. Math., 33(2003), 1379-1393. crossref(new window)

12.
Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal., 47(1982), 153-164. crossref(new window)

13.
D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math., 34(2004), 1147-1176. crossref(new window)

14.
J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc., 95(1960), 433-450. crossref(new window)

15.
J. Yeh, Orthogonal developments of functionals and related theroems in the Wiener space of functions of two variables, Pacific J. Math., 13(1963), 1427-1436. crossref(new window)

16.
J. Yeh, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.