JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Fractional Integrals and Generalized Olsen Inequalities
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 1,  2009, pp.31-39
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.1.031
 Title & Authors
Fractional Integrals and Generalized Olsen Inequalities
Gunawan, Hendra; Eridani, Eridani;
  PDF(new window)
 Abstract
Let be the generalized fractional integral operator associated to a function , as defined in [16]. For a function W on , we shall be interested in the boundedness of the multiplication operator on generalized Morrey spaces. Under some assumptions on , we obtain an inequality for , which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.
 Keywords
Fractional integral operators;Hardy-Littlewood maximal operators;multiplication operators;Olsen inequality;Morrey spaces;
 Language
English
 Cited by
1.
Generalized fractional integrals on generalized Morrey spaces, Mathematische Nachrichten, 2014, 287, 2-3, 339  crossref(new windwow)
2.
Weighted Hardy and potential operators in the generalized Morrey spaces, Journal of Mathematical Analysis and Applications, 2011, 377, 2, 792  crossref(new windwow)
3.
FRACTIONAL INTEGRAL OPERATORS IN NONHOMOGENEOUS SPACES, Bulletin of the Australian Mathematical Society, 2009, 80, 02, 324  crossref(new windwow)
4.
Boundedness for the commutator of fractional integral on generalized morrey space in nonhomogeneous space, Analysis in Theory and Applications, 2011, 27, 1, 51  crossref(new windwow)
 References
1.
D. R. Adams, A note on Riesz potentials, Duke Math. J., 42(1975), 765-778. crossref(new window)

2.
D. R. Adams and L. I. Hedberg, Functions Spaces and Potential Theory, Springer-Verlag, Berlin, 1996.

3.
S. Campanato, Proprieta di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa, 18(1964), 137-160.

4.
F. Chiarenza and M. Frasca, Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat., 7(1987), 273-279.

5.
Eridani, On the boundedness of a generalized fractional integral on generalized Morrey spaces, Tamkang J. Math., 33(2002), 335-340.

6.
Eridani, H. Gunawan, and E. Nakai, On generalized fractional integral operators, Sci. Math. Jpn., 60(2004), 539-550.

7.
H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc. (MIHMI), 9(2003), 39-43.

8.
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. I, Math. Zeit., 27(1927), 565-606.

9.
G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math., 54(1930), 81-116. crossref(new window)

10.
G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals. II, Math. Zeit., 34(1932), 403-439. crossref(new window)

11.
L. I. Hedberg, On certain convolution inequalities, Proc. Amer. Math. Soc., 36(1972), 505-510. crossref(new window)

12.
K. Kurata, S. Nishigaki, and S. Sugano, Boundedness of integral operators on generalized Morrey spaces and its application to Schrodinger operators, Proc. Amer. Math. Soc., 128(2002), 1125-1134.

13.
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Vol. 204, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006.

14.
C. B. Morrey, Functions of several variables and absolute continuity, Duke Math. J., 6(1940), 187-215. crossref(new window)

15.
E. Nakai, Hardy-Littlewood maximal operator, singular integral operators, and the Riesz potentials on generalized Morrey spaces, Math. Nachr., 166(1994), 95-103. crossref(new window)

16.
E. Nakai, On generalized fractional integrals, Taiwanese J. Math., 5(2001), 587-602.

17.
E. Nakai, On generalized fractional integrals on the weak Orlicz spaces, $BMO_\phi$, the Morrey spaces and the Campanato spaces, in Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), 95-103, de Gruyter, Berlin, 2002.

18.
E. Nakai, Recent topics on fractional integral operators (Japanese), Sugaku, 56(2004), 260-280.

19.
E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, in Banach and Function Spaces, 323-333, Yokohama Publ., Yokohama, 2004.

20.
P. A. Olsen, Fractional integration, Morrey spaces and a Schrodinger equation, Comm. Partial Differential Equations, 20(1995), 2005-2055. crossref(new window)

21.
J. Peetre, On the theory of $L_{p,\lambda}$ spaces, J. Funct. Anal., 4(1969), 71-87. crossref(new window)

22.
B. Rubin, Fractional Integrals and Potentials, Addison-Wesley, Essex, 1996.

23.
S. L. Sobolev, On a theorem in functional analysis (Russian), Mat. Sob., 46(1938), 471-497.

24.
S. L. Sobolev, On a theorem in functional analysis, English translation in Amer. Math. Soc. Transl. ser. 2, 34(1963), 39-68.

25.
E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, 1970.

26.
S. Sugano and H. Tanaka, Boundedness of fractional integral operators on generalized Morrey spaces, Sci. Math. Jpn., 58(2003), 531-540.

27.
C. T. Zorko, Morrey space, Proc. Amer. Math. Soc., 98(1986), 586-592. crossref(new window)