JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Ideals of the Multiplicative Semigroups ℤn and their Products
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 1,  2009, pp.41-46
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.1.041
 Title & Authors
Ideals of the Multiplicative Semigroups ℤn and their Products
Puninagool, Wattapong; Sanwong, Jintana;
  PDF(new window)
 Abstract
The multiplicative semigroups have been widely studied. But, the ideals of seem to be unknown. In this paper, we provide a complete descriptions of ideals of the semigroups and their product semigroups . We also study the numbers of ideals in such semigroups.
 Keywords
ideals;integers modulo n;product semigroups;
 Language
English
 Cited by
 References
1.
G. Ehrlich, Unit-regular ring, Portugaliae Math., 27(1968), 209-212.

2.
E. Hewitt and H. S. Zuckerman, The multiplicative semigroup of integers modulo m, Pacific J. Math., 10(1960), 1291-1308. crossref(new window)

3.
E. Hewitt and H. S. Zuckerman, Finitely dimensional convolution algebras, Acta Math. 93(1955), 67-119. crossref(new window)

4.
J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London, 1976.

5.
T. M. Hungerford, Algebra, Spring-Verlag, Newyork, 2003.

6.
Y. Kemprasit and S. Buapradist, A note on the multiplicative semigroup $Z_n$ whose bi-ideals are quasi-ideals, Southeast Asian Bull. Math., Springer-Verlag 25(2001), 269-271. crossref(new window)

7.
A. E. Livingston and M. L. Livingston, The congruence $a^{r+s}{\equiv}a^r(mod\;m)$, Amer. Math. Monthly, 85(1980), 811-814.

8.
W. Sierpinski, Elementary Theory of Numbers, PWN-Polish Scientific Publisher, Warszawa, 1988.

9.
H. S. Vandiver and M. W. Weaver, Introduction to arithmetic factorization and congruences from the standpoint of abstract algebra, Amer. Math. Monthly, 65(1958), 48-51.