JOURNAL BROWSE
Search
Advanced SearchSearch Tips
On Local Properties of Factored Fourier Series
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 2,  2009, pp.313-319
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.2.313
 Title & Authors
On Local Properties of Factored Fourier Series
Bor, Huseyin;
  PDF(new window)
 Abstract
In the present paper, a theorem dealing with local property of summability of factored Fourier series which generalizes a result of Mazhar [8], has been proved. Some new results have also been obtained.
 Keywords
absolute summability;infinite series;local property;Fourier series;
 Language
English
 Cited by
 References
1.
S. N. Bhatt, An aspect of local property of | R, log n, 1 | summability of the factored Fourier series, Proc. Nat. Inst. India, 26(1960), 69-73.

2.
H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc., 97(1985), 147-149. crossref(new window)

3.
H. Bor, Local property of | $\overline{N},\;p_n$ |$_k$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica, 17(1989), 165-170.

4.
H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc., 113(1991), 1009-1012. crossref(new window)

5.
H. Bor, On the local property of | $\overline{N},\;p_n$ |$_k$ summability of factored Fourier series, J. Math. Anal. Appl., 163(1992), 220-226. crossref(new window)

6.
T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc., 7(1957), 113-141. crossref(new window)

7.
G. H. Hardy, Divergent series, Oxford Univ. Press, Oxford, 1949.

8.
S.M. Mazhar, A note on the localization of | $\overline{N},\;p_n$ |$_k$ summability of Fourier series, Kumamoto J. Math., 12(1999), 1-8.

9.
K. Matsumoto, Local property of the summability | $R,\;\lambda_n,\;1$ |, Tohoku Math. J., 8(2)(1956), 114-124. crossref(new window)

10.
K. N. Mishra, Multipliers for | $\overline{N},\;p_n$ | summability of Fourier series, Bull. Inst. Math. Acad. Sinica, 14(1986), 431-438.

11.
R. Mohanty, On the summability | R, log w, 1 | of Fourier series, J. London Math. Soc., 25(1950), 67-72. crossref(new window)

12.
W. T. Sulaiman, On some summability factors of infinite series, Proc. Amer. Math. Soc., 115(1992), 313-317. crossref(new window)

13.
E.C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1961.