JOURNAL BROWSE
Search
Advanced SearchSearch Tips
Lower Bounds on Boundary Slope Diameters for Montesinos Knots
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 2,  2009, pp.321-348
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.2.321
 Title & Authors
Lower Bounds on Boundary Slope Diameters for Montesinos Knots
Ichihara, Kazuhiro; Mizushima, Shigeru;
  PDF(new window)
 Abstract
In this paper, we give two lower bounds on the diameter of the boundary slope set of a Montesinos knot. One is described in terms of the minimal crossing numbers of the knots, and the other is related to the Euler characteristics of essential surfaces with the maximal/minimal boundary slopes.
 Keywords
boundary slopes;diameter;Montesinos knot;
 Language
English
 Cited by
1.
Pairs of boundary slopes with small differences, Boletín de la Sociedad Matemática Mexicana, 2014, 20, 2, 363  crossref(new windwow)
 References
1.
R. J. Aumann, Asphericity of alternating knots, Ann. Math., 64(2)(1956), 374-392. crossref(new window)

2.
M. Culler and P. B. Shalen, Bounded, separating, incompressible surfaces in knot manifolds, Invent. Math., 75(1984), 537-545. crossref(new window)

3.
M. Culler and P. B. Shalen, Boundary slopes of knots, Comment. Math. Helv., 74(1999), 530-547. crossref(new window)

4.
M. Culler and P. B. Shalen, Knots with only two strict essential surfaces, Geometry and Topology Monographs, 7(2004), 335-430.

5.
C. Delman and R. Roberts, Alternating knots satisfy property P, Comment. Math. Helv., 74(1999), 376-397. crossref(new window)

6.
A. Hatcher, On the boundary curves of incompressible surfaces, Pacific J. Math., 99(1982), 373-377. crossref(new window)

7.
A. Hatcher and U. Oertel, Boundary slopes for Montesinos knots, Topology, 28(4)(1989) 453-480. crossref(new window)

8.
A. Hatcher and W. Thurston, Incompressible surfaces in 2-bridge knot complements, Invent. Math., 79(1985), 225-246. crossref(new window)

9.
K. Ichihara and S. Mizushima, Bounds on numerical boundary slopes for Montesinos knots, Hiroshima Math. J., 37(2)(2007), 211-252.

10.
K. Ichihara and S. Mizushima, Crossing number and diameter of boundary slope set of Montesinos knot, Comm. Anal. Geom., 16(3)(2008), 565-589 crossref(new window)

11.
T. W. Mattman, G. Maybrun and K. Robinson, 2-bridge knot boundary slopes: diameter and genus, Osaka J, Math., 45(2)(2008), 471-489.

12.
D. Rolfsen, Knots and Links, Publish or Perish, Berkeley, California.