Advanced SearchSearch Tips
Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
  • Journal title : Kyungpook mathematical journal
  • Volume 49, Issue 3,  2009, pp.411-418
  • Publisher : Department of Mathematics, Kyungpook National University
  • DOI : 10.5666/KMJ.2009.49.3.411
 Title & Authors
Weak Strictly Persistence Homeomorphisms and Weak Inverse Shadowing Property and Genericity
Honary, Bahman; Bahabadi, Alireza Zamani;
  PDF(new window)
In this paper we introduce the notions of strict persistence and weakly strict persistence which are stronger than those of persistence and weak persistence, respectively, and study their relations with shadowing property. In particular, we show that the weakly strict persistence and the weak inverse shadowing property are locally generic in Z(M).
inverse shadowing property;persistence -pseudo-orbit;shadowing property;
 Cited by
Inverse Shadowing and Weak Inverse Shadowing Property, Applied Mathematics, 2012, 03, 05, 478  crossref(new windwow)
J. Lewowicz, Persistence in expansive systems, Ergodic Theory Dynam. Systems, 3(1983), 567-578.

T. Choi, S. Kim, K. Lee, Weak inverse shadowing and genericity, Bull. Korean Math. Soc., 43(1)(2006), 43-52. crossref(new window)

B. Honary, A. Zamani Bahabadi, Orbital shadowing property, Bull. Korean Math. Soc., 45(4)(2008), 645-650. crossref(new window)

P. Walters, On the pseudo orbit tracing property and its relationship to stability, Lecture Notes in Math., Vol. 668, Springer, Berlin, 1978, 231-244. crossref(new window)

R. Corless and S. Plyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl., 189(1995), 409-423. crossref(new window)

P. Diamond, P. Kloeden, V. Korzyakin and A. Pokrovskii, Computer robustness of semihypebolic mappings, Random and computational Dynamics, 3(1995), 53-70.

P. Kloeden, J. Ombach and A. Pokroskii, Continuous and inverse shadowing, Functional Differential Equations, 6(1999), 137-153.

K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc., 67(2003), 15-26. crossref(new window)

P. Diamond, Y. Han and K. Lee, Bishadowing and hyperbolicity, International Journal of Bifuractions and chaos, 12(2002), 1779-1788. crossref(new window)

K. Kuratowski, "Topology2", AcademicPress-PWN-PolishSciencePublishers, Warszawa, 1968. MR0259835(41 4467).